14 #if defined(DEBUG) || defined(WARNINGMSG) 39 if(err.size() == 1 && err(0,0) < prec.
Eps()) {
43 if(err.size() == 1 && err(0,0) > prec.
Eps()) {
48 double epspdf = std::max(1.e-6, prec.
Eps2());
49 double dgmin = err(0,0);
51 for(
unsigned int i = 0; i < err.Nrow(); i++) {
54 MN_INFO_VAL2(
"negative or zero diagonal element in covariance matrix",i);
56 if(err(i,i) < dgmin) dgmin = err(i,i);
61 dg = 0.5 + epspdf - dgmin;
64 MN_INFO_VAL2(
"added to diagonal of Error matrix a value",dg);
71 for(
unsigned int i = 0; i < err.Nrow(); i++) {
73 if(err(i,i) < 0.) err(i,i) = 1.;
74 s(i) = 1./
sqrt(err(i,i));
75 for(
unsigned int j = 0; j <= i; j++) {
76 p(i,j) = err(i,j)*s(i)*s(j);
82 double pmin = eval(0);
83 double pmax = eval(eval.
size() - 1);
85 pmax = std::max(
fabs(pmax), 1.);
88 double padd = 0.001*pmax - pmin;
90 std::cout<<
"eigenvalues: "<<std::endl;
92 for(
unsigned int i = 0; i < err.Nrow(); i++) {
93 err(i,i) *= (1. + padd);
95 std::cout<<eval(i)<<std::endl;
100 MN_INFO_VAL2(
"matrix forced pos-def by adding to diagonal",padd);
#define MN_INFO_VAL2(loc, x)
Namespace for new ROOT classes and functions.
double Eps() const
eps returns the smallest possible number so that 1.+eps > 1.
Class describing a symmetric matrix of size n.
determines the relative floating point arithmetic precision.
const FunctionGradient & Gradient() const
VecExpr< UnaryOp< Fabs< T >, VecExpr< A, T, D >, T >, T, D > fabs(const VecExpr< A, T, D > &rhs)
unsigned int size() const
MinimumState operator()(const MinimumState &, const MnMachinePrecision &) const
const MinimumError & Error() const
const MinimumParameters & Parameters() const
double Eps2() const
eps2 returns 2*sqrt(eps)
you should not use this method at all Int_t Int_t Double_t Double_t Double_t e
MinimumError keeps the inv.
LAVector eigenvalues(const LASymMatrix &mat)
MinimumState keeps the information (position, Gradient, 2nd deriv, etc) after one minimization step (...
const MnAlgebraicSymMatrix & InvHessian() const