71 const Int_t nrows = row_upb-row_lwb+1;
79 fLU.
ResizeTo(row_lwb,row_lwb+nrows-1,row_lwb,row_lwb+nrows-1);
90 Error(
"TDecompLU(const TMatrixD &",
"matrix should be square");
131 Error(
"Decompose()",
"Matrix has not been set");
154 Error(
"GetMatrix()",
"Matrix is singular");
159 Error(
"GetMatrix()",
"Decomposition failed");
169 for (Int_t irow = 0; irow < n; irow++) {
170 const Int_t off_row = irow*n;
171 for (Int_t icol = 0; icol < n; icol++) {
172 if (icol > irow) pL[off_row+icol] = 0.;
173 else if (icol < irow) pU[off_row+icol] = 0.;
174 else pL[off_row+icol] = 1.;
183 for (Int_t i = n-1; i >= 0; i--) {
184 const Int_t j =
fIndex[i];
186 const Int_t off_j = j*n;
187 const Int_t off_i = i*n;
188 for (Int_t k = 0; k < n; k++) {
189 const Double_t tmp = pA[off_j+k];
190 pA[off_j+k] = pA[off_i+k];
208 Error(
"TDecompLU(const TMatrixD &",
"matrix should be square");
237 Error(
"Solve()",
"Matrix is singular");
242 Error(
"Solve()",
"Decomposition failed");
248 Error(
"Solve(TVectorD &",
"vector and matrix incompatible");
260 for (i = 0; i < n ; i++) {
261 const Int_t off_i = i*n;
262 if (TMath::Abs(pLU[off_i+i]) <
fTol) {
263 Error(
"Solve(TVectorD &b)",
"LU[%d,%d]=%.4e < %.4e",i,i,pLU[off_i+i],
fTol);
270 for (i = 0; i < n; i++) {
271 const Int_t off_i = i*n;
272 const Int_t iperm =
fIndex[i];
273 Double_t r = pb[iperm];
276 for (Int_t j = nonzero; j < i; j++)
277 r -= pLU[off_i+j]*pb[j];
284 for (i = n-1; i >= 0; i--) {
285 const Int_t off_i = i*n;
287 for (Int_t j = i+1; j < n; j++)
288 r -= pLU[off_i+j]*pb[j];
289 pb[i] = r/pLU[off_i+i];
304 Error(
"Solve()",
"Matrix is singular");
309 Error(
"Solve()",
"Decomposition failed");
315 Error(
"Solve(TMatrixDColumn &",
"vector and matrix incompatible");
325 for (i = 0; i < n ; i++) {
326 const Int_t off_i = i*n;
327 if (TMath::Abs(pLU[off_i+i]) <
fTol) {
328 Error(
"Solve(TMatrixDColumn &cb)",
"LU[%d,%d]=%.4e < %.4e",i,i,pLU[off_i+i],
fTol);
333 Double_t *pcb = cb.
GetPtr();
334 const Int_t inc = cb.
GetInc();
338 for (i = 0; i < n; i++) {
339 const Int_t off_i = i*n;
340 const Int_t off_i2 = i*inc;
341 const Int_t iperm =
fIndex[i];
342 const Int_t off_iperm = iperm*inc;
343 Double_t r = pcb[off_iperm];
344 pcb[off_iperm] = pcb[off_i2];
346 for (Int_t j = nonzero; j <= i-1; j++)
347 r -= pLU[off_i+j]*pcb[j*inc];
354 for (i = n-1; i >= 0; i--) {
355 const Int_t off_i = i*n;
356 const Int_t off_i2 = i*inc;
357 Double_t r = pcb[off_i2];
358 for (Int_t j = i+1; j < n; j++)
359 r -= pLU[off_i+j]*pcb[j*inc];
360 pcb[off_i2] = r/pLU[off_i+i];
375 Error(
"TransSolve()",
"Matrix is singular");
380 Error(
"TransSolve()",
"Decomposition failed");
386 Error(
"TransSolve(TVectorD &",
"vector and matrix incompatible");
398 for (i = 0; i < n ; i++) {
399 const Int_t off_i = i*n;
400 if (TMath::Abs(pLU[off_i+i]) <
fTol) {
401 Error(
"TransSolve(TVectorD &b)",
"LU[%d,%d]=%.4e < %.4e",i,i,pLU[off_i+i],
fTol);
407 for (i = 0; i < n; i++) {
408 const Int_t off_i = i*n;
410 for (Int_t j = 0; j < i ; j++) {
411 const Int_t off_j = j*n;
412 r -= pLU[off_j+i]*pb[j];
414 pb[i] = r/pLU[off_i+i];
419 for (i = n-1 ; i >= 0; i--) {
422 for (Int_t j = i+1; j <= nonzero; j++) {
423 const Int_t off_j = j*n;
424 r -= pLU[off_j+i]*pb[j];
428 const Int_t iperm =
fIndex[i];
445 Error(
"TransSolve()",
"Matrix is singular");
450 Error(
"TransSolve()",
"Decomposition failed");
456 Error(
"TransSolve(TMatrixDColumn &",
"vector and matrix incompatible");
468 for (i = 0; i < n ; i++) {
469 const Int_t off_i = i*n;
470 if (TMath::Abs(pLU[off_i+i]) <
fTol) {
471 Error(
"TransSolve(TMatrixDColumn &cb)",
"LU[%d,%d]=%.4e < %.4e",i,i,pLU[off_i+i],
fTol);
477 for (i = 0; i < n; i++) {
478 const Int_t off_i = i*n;
479 Double_t r = cb(i+lwb);
480 for (Int_t j = 0; j < i ; j++) {
481 const Int_t off_j = j*n;
482 r -= pLU[off_j+i]*cb(j+lwb);
484 cb(i+lwb) = r/pLU[off_i+i];
489 for (i = n-1 ; i >= 0; i--) {
490 Double_t r = cb(i+lwb);
492 for (Int_t j = i+1; j <= nonzero; j++) {
493 const Int_t off_j = j*n;
494 r -= pLU[off_j+i]*cb(j+lwb);
498 const Int_t iperm =
fIndex[i];
499 cb(i+lwb) = cb(iperm+lwb);
530 Error(
"Invert(TMatrixD &",
"Input matrix has wrong shape");
547 const Int_t rowUpb = rowLwb+
GetNrows()-1;
549 TMatrixD inv(rowLwb,rowUpb,rowLwb,rowUpb);
563 printf(
"fSign = %f\n",
fSign);
565 for (Int_t i = 0; i <
fNIndex; i++)
566 printf(
"[%d] = %d\n",i,
fIndex[i]);
575 if (
this != &source) {
600 Double_t tol,Int_t &nrZeros)
606 Bool_t isAllocated = kFALSE;
607 Double_t *scale = work;
610 scale =
new Double_t[n];
616 for (Int_t i = 0; i < n ; i++) {
617 const Int_t off_i = i*n;
619 for (Int_t j = 0; j < n; j++) {
620 const Double_t tmp = TMath::Abs(pLU[off_i+j]);
624 scale[i] = (max == 0.0 ? 0.0 : 1.0/max);
627 for (Int_t j = 0; j < n; j++) {
628 const Int_t off_j = j*n;
630 for (Int_t i = 0; i < j; i++) {
631 const Int_t off_i = i*n;
632 Double_t r = pLU[off_i+j];
633 for (Int_t k = 0; k < i; k++) {
634 const Int_t off_k = k*n;
635 r -= pLU[off_i+k]*pLU[off_k+j];
647 for (Int_t i = j; i < n; i++) {
648 const Int_t off_i = i*n;
649 Double_t r = pLU[off_i+j];
650 for (Int_t k = 0; k < j; k++) {
651 const Int_t off_k = k*n;
652 r -= pLU[off_i+k]*pLU[off_k+j];
655 const Double_t tmp = scale[i]*TMath::Abs(r);
664 const Int_t off_imax = imax*n;
665 for (Int_t k = 0; k < n; k++ ) {
666 const Double_t tmp = pLU[off_imax+k];
667 pLU[off_imax+k] = pLU[off_j+k];
671 scale[imax] = scale[j];
676 if (pLU[off_j+j] != 0.0) {
677 if (TMath::Abs(pLU[off_j+j]) < tol)
680 const Double_t tmp = 1.0/pLU[off_j+j];
681 for (Int_t i = j+1; i < n; i++) {
682 const Int_t off_i = i*n;
687 ::Error(
"TDecompLU::DecomposeLUCrout",
"matrix is singular");
688 if (isAllocated)
delete [] scale;
709 Double_t tol,Int_t &nrZeros)
718 for (Int_t j = 0; j < n-1; j++) {
719 const Int_t off_j = j*n;
723 Double_t max = TMath::Abs(pLU[off_j+j]);
726 for (Int_t i = j+1; i < n; i++) {
727 const Int_t off_i = i*n;
728 const Double_t mLUij = TMath::Abs(pLU[off_i+j]);
737 const Int_t off_ipov = i_pivot*n;
738 for (Int_t k = 0; k < n; k++ ) {
739 const Double_t tmp = pLU[off_ipov+k];
740 pLU[off_ipov+k] = pLU[off_j+k];
747 const Double_t mLUjj = pLU[off_j+j];
750 if (TMath::Abs(mLUjj) < tol)
752 for (Int_t i = j+1; i < n; i++) {
753 const Int_t off_i = i*n;
754 const Double_t mLUij = pLU[off_i+j]/mLUjj;
755 pLU[off_i+j] = mLUij;
757 for (Int_t k = j+1; k < n; k++) {
758 const Double_t mLUik = pLU[off_i+k];
759 const Double_t mLUjk = pLU[off_j+k];
760 pLU[off_i+k] = mLUik-mLUij*mLUjk;
764 ::Error(
"TDecompLU::DecomposeLUGauss",
"matrix is singular");
781 ::Error(
"TDecompLU::InvertLU",
"matrix should be square");
789 Bool_t isAllocatedI = kFALSE;
790 Int_t *index = worki;
792 isAllocatedI = kTRUE;
793 index =
new Int_t[n];
801 ::Error(
"TDecompLU::InvertLU",
"matrix is singular, %d diag elements < tolerance of %.4e",nrZeros,tol);
818 for (j = 0; j < n; j++) {
819 const Int_t off_j = j*n;
821 pLU[off_j+j] = 1./pLU[off_j+j];
822 const Double_t mLU_jj = -pLU[off_j+j];
826 Double_t *pX = pLU+j;
828 for (k = 0; k <= j-1; k++) {
829 const Int_t off_k = k*n;
830 if ( pX[off_k] != 0.0 ) {
831 const Double_t tmp = pX[off_k];
832 for (Int_t i = 0; i <= k-1; i++) {
833 const Int_t off_i = i*n;
834 pX[off_i] += tmp*pLU[off_i+k];
836 pX[off_k] *= pLU[off_k+k];
839 for (k = 0; k <= j-1; k++) {
840 const Int_t off_k = k*n;
848 Bool_t isAllocatedD = kFALSE;
849 Double_t *pWorkd = workd;
851 isAllocatedD = kTRUE;
852 pWorkd =
new Double_t[n];
855 for (j = n-1; j >= 0; j--) {
858 for (Int_t i = j+1; i < n; i++) {
859 const Int_t off_i = i*n;
860 pWorkd[i] = pLU[off_i+j];
867 const Double_t *mp = pLU+j+1;
868 Double_t *tp = pLU+j;
870 for (Int_t irow = 0; irow < n; irow++) {
872 const Double_t *sp = pWorkd+j+1;
873 for (Int_t icol = 0; icol < n-1-j ; icol++)
874 sum += *mp++ * *sp++;
886 for (j = n-1; j >= 0; j--) {
887 const Int_t jperm = index[j];
889 for (Int_t i = 0; i < n; i++) {
890 const Int_t off_i = i*n;
891 const Double_t tmp = pLU[off_i+jperm];
892 pLU[off_i+jperm] = pLU[off_i+j];
virtual TMatrixTBase< Element > & UnitMatrix()
Make a unit matrix (matrix need not be a square one).
virtual Bool_t MultiSolve(TMatrixD &B)
Solve set of equations with RHS in columns of B.
TMatrixTDiag_const< Double_t > TMatrixDDiag_const
void Print(Option_t *opt="") const
Print internals of this object.
virtual Bool_t Decompose()
Matrix A is decomposed in components U and L so that P * A = U * L If the decomposition succeeds...
TDecompLU()
Default constructor.
virtual const Element * GetMatrixArray() const
Decomposition Base class.
static Bool_t InvertLU(TMatrixD &a, Double_t tol, Double_t *det=0)
Calculate matrix inversion through in place forward/backward substitution.
virtual void Det(Double_t &d1, Double_t &d2)
Calculate determinant det = d1*TMath::Power(2.,d2)
static Bool_t DecomposeLUCrout(TMatrixD &lu, Int_t *index, Double_t &sign, Double_t tol, Int_t &nrZeros)
Crout/Doolittle algorithm of LU decomposing a square matrix, with implicit partial pivoting...
virtual TMatrixTBase< Element > & ResizeTo(Int_t nrows, Int_t ncols, Int_t=-1)
Set size of the matrix to nrows x ncols New dynamic elements are created, the overlapping part of the...
virtual Int_t GetNcols() const
LongDouble_t Power(LongDouble_t x, LongDouble_t y)
TDecompBase & operator=(const TDecompBase &source)
Assignment operator.
TDecompLU & operator=(const TDecompLU &source)
assignment operator
static void DiagProd(const TVectorD &diag, Double_t tol, Double_t &d1, Double_t &d2)
Element * GetMatrixArray()
TMatrixT< Double_t > TMatrixD
void Print(Option_t *opt="") const
Print class members.
const TMatrixD GetMatrix()
Reconstruct the original matrix using the decomposition parts.
virtual Int_t GetNrows() const
virtual void Det(Double_t &d1, Double_t &d2)
Matrix determinant det = d1*TMath::Power(2.,d2)
void Print(Option_t *name="") const
Print the matrix as a table of elements.
const TMatrixTBase< Element > * GetMatrix() const
virtual void SetMatrix(const TMatrixD &a)
Set matrix to be decomposed.
virtual Bool_t Solve(TVectorD &b)
Solve Ax=b assuming the LU form of A is stored in fLU, but assume b has not been transformed.
you should not use this method at all Int_t Int_t Double_t Double_t Double_t Int_t Double_t Double_t Double_t Double_t b
virtual Bool_t TransSolve(TVectorD &b)
Solve A^T x=b assuming the LU form of A^T is stored in fLU, but assume b has not been transformed...
static Bool_t DecomposeLUGauss(TMatrixD &lu, Int_t *index, Double_t &sign, Double_t tol, Int_t &nrZeros)
LU decomposition using Gaussian Elimination with partial pivoting (See Golub & Van Loan...