63 Double_t
Interval(Int_t
x, Int_t
y, Int_t
z, Double_t
bm, Double_t
em, Double_t
e, Int_t
mid, Double_t
sde, Double_t
sdb, Double_t
tau, Double_t
b, Int_t
m);
66 Double_t
Likelihood(Double_t mu, Int_t
x, Int_t
y, Int_t
z, Double_t
bm, Double_t
em, Int_t
mid, Double_t
sde, Double_t
sdb, Double_t
tau, Double_t
b, Int_t
m, Int_t what);
69 Double_t
EvalLikeMod1(Double_t mu, Int_t
x, Int_t
y, Int_t
z, Double_t
tau, Int_t
m, Int_t what);
70 Double_t
LikeMod1(Double_t mu, Double_t
b, Double_t
e, Int_t
x, Int_t
y, Int_t
z, Double_t
tau, Int_t
m);
71 void ProfLikeMod1(Double_t mu, Double_t &
b, Double_t &
e, Int_t
x, Int_t
y, Int_t
z, Double_t
tau, Int_t
m);
72 Double_t
LikeGradMod1(Double_t
e, Double_t mu, Int_t
x, Int_t
y, Int_t
z, Double_t
tau, Int_t
m);
77 Double_t
LikeMod2(Double_t mu, Double_t
b, Double_t
e, Int_t
x, Int_t
y, Double_t
em, Double_t
tau, Double_t
v);
81 Double_t
LikeMod3(Double_t mu, Double_t
b, Double_t
e, Int_t
x, Double_t
bm, Double_t
em, Double_t u, Double_t
v);
85 Double_t
LikeMod4(Double_t mu, Double_t
b, Int_t
x, Int_t
y, Double_t
tau);
89 Double_t
LikeMod5(Double_t mu, Double_t
b, Int_t
x, Double_t
bm, Double_t u);
92 Double_t
EvalLikeMod6(Double_t mu, Int_t
x, Int_t
z, Double_t
b, Int_t
m, Int_t what);
93 Double_t
LikeMod6(Double_t mu, Double_t
b, Double_t
e, Int_t
x, Int_t
z, Int_t
m);
96 Double_t
EvalLikeMod7(Double_t mu, Int_t
x, Double_t
em, Double_t
sde, Double_t
b, Int_t what);
97 Double_t
LikeMod7(Double_t mu, Double_t
b, Double_t
e, Int_t
x, Double_t
em, Double_t
v);
101 static Double_t
EvalMonomial(Double_t
x,
const Int_t coef[], Int_t
N);
104 Double_t
ComputeInterval(Int_t
x, Int_t
y, Int_t
z, Double_t
bm, Double_t
em, Double_t
e, Int_t
mid, Double_t
sde, Double_t
sdb, Double_t
tau, Double_t
b, Int_t
m);
106 void SetModelParameters(Int_t
x, Int_t
y, Int_t
z, Double_t
bm, Double_t
em, Double_t
e, Int_t
mid, Double_t
sde, Double_t
sdb, Double_t
tau, Double_t
b, Int_t
m);
115 TRolke(Double_t CL = 0.9, Option_t *option =
"");
156 Double_t
CalculateInterval(Int_t x, Int_t y, Int_t z, Double_t bm, Double_t em, Double_t e, Int_t
mid, Double_t sde, Double_t sdb, Double_t tau, Double_t b, Int_t m);
159 bool GetLimits(Double_t& low, Double_t& high);
164 bool GetSensitivity(Double_t& low, Double_t& high, Double_t pPrecision = 0.00001);
168 bool GetLimitsQuantile(Double_t& low, Double_t& high, Int_t& out_x, Double_t integral = 0.5);
171 bool GetLimitsML(Double_t& low, Double_t& high, Int_t& out_x);
192 void Print(Option_t*)
const;
Double_t Interval(Int_t x, Int_t y, Int_t z, Double_t bm, Double_t em, Double_t e, Int_t mid, Double_t sde, Double_t sdb, Double_t tau, Double_t b, Int_t m)
Internal helper function 'Interval'.
TRolke(Double_t CL=0.9, Option_t *option="")
Constructor with optional Confidence Level argument.
Double_t LikeMod4(Double_t mu, Double_t b, Int_t x, Int_t y, Double_t tau)
Profile Likelihood function for MODEL 4: Poiss background/Efficiency known.
you should not use this method at all Int_t Int_t Double_t Double_t Double_t Int_t mid
Double_t LogFactorial(Int_t n)
LogFactorial function (use the logGamma function via the relation Gamma(n+1) = n! ...
bool GetLimitsQuantile(Double_t &low, Double_t &high, Int_t &out_x, Double_t integral=0.5)
get the upper and lower limits for the outcome corresponding to a given quantile. ...
Double_t CalculateInterval(Int_t x, Int_t y, Int_t z, Double_t bm, Double_t em, Double_t e, Int_t mid, Double_t sde, Double_t sdb, Double_t tau, Double_t b, Int_t m)
void SetModelParameters()
Int_t fNumWarningsDeprecated2
bool GetSensitivity(Double_t &low, Double_t &high, Double_t pPrecision=0.00001)
get the upper and lower average limits based on the specified model.
void SetPoissonBkgGaussEff(Int_t x, Int_t y, Double_t em, Double_t tau, Double_t sde)
Model 2: Background - Poisson, Efficiency - Gaussian.
void SetPoissonBkgBinomEff(Int_t x, Int_t y, Int_t z, Double_t tau, Int_t m)
Model 1: Background - Poisson, Efficiency - Binomial.
you should not use this method at all Int_t y
static Double_t EvalMonomial(Double_t x, const Int_t coef[], Int_t N)
Evaluate mononomial.
Double_t EvalLikeMod2(Double_t mu, Int_t x, Int_t y, Double_t em, Double_t sde, Double_t tau, Int_t what)
Calculates the Profile Likelihood for MODEL 2: Poisson background/ Gauss Efficiency.
you should not use this method at all Int_t Int_t Double_t Double_t Double_t Int_t Double_t Double_t Double_t tau
you should not use this method at all Int_t Int_t Double_t Double_t em
Double_t EvalLikeMod6(Double_t mu, Int_t x, Int_t z, Double_t b, Int_t m, Int_t what)
Calculates the Profile Likelihood for MODEL 6: Background known/Efficiency binomial.
Double_t Likelihood(Double_t mu, Int_t x, Int_t y, Int_t z, Double_t bm, Double_t em, Int_t mid, Double_t sde, Double_t sdb, Double_t tau, Double_t b, Int_t m, Int_t what)
Internal helper function Chooses between the different profile likelihood functions to use for the di...
void SetGaussBkgGaussEff(Int_t x, Double_t bm, Double_t em, Double_t sde, Double_t sdb)
Model 3: Background - Gaussian, Efficiency - Gaussian (x,bm,em,sde,sdb)
Double_t LikeMod6(Double_t mu, Double_t b, Double_t e, Int_t x, Int_t z, Int_t m)
Profile Likelihood function for MODEL 6: background known/ Efficiency binomial.
Double_t EvalLikeMod4(Double_t mu, Int_t x, Int_t y, Double_t tau, Int_t what)
Calculates the Profile Likelihood for MODEL 4: Poiss background/Efficiency known. ...
Double_t EvalLikeMod1(Double_t mu, Int_t x, Int_t y, Int_t z, Double_t tau, Int_t m, Int_t what)
Calculates the Profile Likelihood for MODEL 1: Poisson background/ Binomial Efficiency.
Double_t LikeMod7(Double_t mu, Double_t b, Double_t e, Int_t x, Double_t em, Double_t v)
Profile Likelihood function for MODEL 6: background known/ Efficiency gaussian.
you should not use this method at all Int_t Int_t Double_t bm
bool GetLimitsML(Double_t &low, Double_t &high, Int_t &out_x)
get the upper and lower limits for the most likely outcome.
you should not use this method at all * sde
you should not use this method at all Int_t Int_t Double_t Double_t Double_t Int_t Double_t Double_t Double_t Double_t Int_t m
void SetGaussBkgKnownEff(Int_t x, Double_t bm, Double_t sdb, Double_t e)
Model 5: Background - Gaussian, Efficiency - known (x,bm,sdb,e.
void SetCLSigmas(Double_t CLsigmas)
void Print(Option_t *) const
Dump internals. Print members.
void SetKnownBkgBinomEff(Int_t x, Int_t z, Int_t m, Double_t b)
Model 6: Background - known, Efficiency - Binomial (x,z,m,b)
Double_t Erf(Double_t x)
Computation of the error function erf(x).
void SetSwitch(bool bnd)
Deprecated name for SetBounding.
void SetPoissonBkgKnownEff(Int_t x, Int_t y, Double_t tau, Double_t e)
Model 4: Background - Poisson, Efficiency - known (x,y,tau,e)
Double_t LikeMod1(Double_t mu, Double_t b, Double_t e, Int_t x, Int_t y, Int_t z, Double_t tau, Int_t m)
Profile Likelihood function for MODEL 1: Poisson background/ Binomial Efficiency. ...
* x
Deprecated and error prone model selection interface.
virtual ~TRolke()
Destructor.
void SetKnownBkgGaussEff(Int_t x, Double_t em, Double_t sde, Double_t b)
Model 7: Background - known, Efficiency - Gaussian (x,em,sde,b)
Double_t LikeMod3(Double_t mu, Double_t b, Double_t e, Int_t x, Double_t bm, Double_t em, Double_t u, Double_t v)
Profile Likelihood function for MODEL 3: Gauss background/Gauss Efficiency.
Double_t LikeGradMod1(Double_t e, Double_t mu, Int_t x, Int_t y, Int_t z, Double_t tau, Int_t m)
Gradient model likelihood.
Double_t GetLowerLimit()
Calculate and get lower limit for the pre-specified model.
Double_t LikeMod2(Double_t mu, Double_t b, Double_t e, Int_t x, Int_t y, Double_t em, Double_t tau, Double_t v)
Profile Likelihood function for MODEL 2: Poisson background/Gauss Efficiency.
Double_t GetUpperLimit()
Calculate and get upper limit for the pre-specified model.
Double_t EvalLikeMod7(Double_t mu, Int_t x, Double_t em, Double_t sde, Double_t b, Int_t what)
Calculates the Profile Likelihood for MODEL 7: background known/Efficiency Gauss. ...
you should not use this method at all Int_t Int_t Double_t Double_t Double_t e
void SetBounding(const bool bnd)
Double_t EvalLikeMod5(Double_t mu, Int_t x, Double_t bm, Double_t sdb, Int_t what)
Calculates the Profile Likelihood for MODEL 5: Gauss background/Efficiency known. ...
void ProfLikeMod1(Double_t mu, Double_t &b, Double_t &e, Int_t x, Int_t y, Int_t z, Double_t tau, Int_t m)
Helper for calculation of estimates of efficiency and background for model 1.
you should not use this method at all Int_t Int_t z
static Double_t EvalPolynomial(Double_t x, const Int_t coef[], Int_t N)
Evaluate polynomial.
Double_t GetBackground()
Return a simple background value (estimate/truth) given the pre-specified model.
you should not use this method at all Int_t Int_t Double_t Double_t Double_t Int_t Double_t Double_t Double_t Double_t b
Double_t ComputeInterval(Int_t x, Int_t y, Int_t z, Double_t bm, Double_t em, Double_t e, Int_t mid, Double_t sde, Double_t sdb, Double_t tau, Double_t b, Int_t m)
ComputeInterval, the internals.
This class computes confidence intervals for the rate of a Poisson process in the presence of uncerta...
Double_t LikeMod5(Double_t mu, Double_t b, Int_t x, Double_t bm, Double_t u)
Profile Likelihood function for MODEL 5: Gauss background/Efficiency known.
Double_t Sqrt(Double_t x)
bool GetCriticalNumber(Int_t &ncrit, Int_t maxtry=-1)
get the value of x corresponding to rejection of the null hypothesis.
Int_t fNumWarningsDeprecated1
you should not use this method at all Int_t Int_t Double_t Double_t Double_t Int_t Double_t Double_t sdb
bool GetLimits(Double_t &low, Double_t &high)
Calculate and get the upper and lower limits for the pre-specified model.
Double_t EvalLikeMod3(Double_t mu, Int_t x, Double_t bm, Double_t em, Double_t sde, Double_t sdb, Int_t what)
Calculates the Profile Likelihood for MODEL 3: Gauss background/ Gauss Efficiency.