14 #ifndef ROOT_Math_TUnuranContDist 15 #define ROOT_Math_TUnuranContDist 64 explicit TUnuranContDist (TF1 * pdf = 0, TF1 * deriv = 0,
bool isLogPdf =
false );
172 double Pdf (
double x)
const;
177 double DPdf(
double x)
const;
182 double Cdf(
double x)
const;
TUnuranBaseDist, base class for Unuran distribution classees such as TUnuranContDist (for one-dimensi...
bool HasPdfArea() const
check if distribution has a pre-computed area below the Pdf
const ROOT::Math::IGenFunction * fDPdf
double Pdf(double x) const
evaluate the Probability Density function.
bool IsLogPdf() const
flag to control if given function represent the log of a pdf
Interface (abstract class) for generic functions objects of one-dimension Provides a method to evalua...
bool GetDomain(double &xmin, double &xmax) const
check if distribution has a defined domain and return in case its domain
virtual ~TUnuranContDist()
Destructor.
double Cdf(double x) const
evaluate the integral (cdf) on the domain.
void SetCdf(TF1 *cdf)
set cdf distribution.
TUnuranContDist(TF1 *pdf=0, TF1 *deriv=0, bool isLogPdf=false)
Constructor from a TF1 objects specifying the pdf and optionally from another function representing t...
double DPdf(double x) const
evaluate the derivative of the pdf.
bool HasCdf() const
check if a cdf function is provided for the distribution
const ROOT::Math::IGenFunction * fCdf
const ROOT::Math::IGenFunction * fPdf
* x
Deprecated and error prone model selection interface.
TUnuranContDist & operator=(const TUnuranContDist &rhs)
Assignment operator.
void SetDomain(double xmin, double xmax)
Set the distribution domain.
void SetPdfArea(double area)
set the area below the pdf
double PdfArea() const
return area below the pdf
TUnuranContDist class describing one dimensional continuous distribution.
bool HasMode() const
check if distribution has a pre-computed mode
virtual TUnuranContDist * Clone() const
Clone (required by base class)
double Mode() const
return the mode (x location of maximum of the pdf)
void SetMode(double mode)
set the distribution mode (x position of its maximum)