Logo ROOT   6.13/01
Reference Guide
List of all members | Public Types | Public Member Functions | Protected Member Functions | Protected Attributes | List of all members
TMatrixTSym< Element > Class Template Reference

template<class Element>
class TMatrixTSym< Element >

TMatrixTSym.

Template class of a symmetric matrix in the linear algebra package

Note that in this implementation both matrix element m[i][j] and m[j][i] are updated and stored in memory . However, when making the object persistent only the upper right triangle is stored .

Definition at line 22 of file TMatrixDSymfwd.h.

Public Types

enum  { kWorkMax = 100 }
 
enum  EMatrixCreatorsOp1 {
  kZero, kUnit, kTransposed, kInverted,
  kAtA
}
 
enum  EMatrixCreatorsOp2 { kPlus, kMinus }
 

Public Member Functions

 TMatrixTSym ()
 
 TMatrixTSym (Int_t nrows)
 
 TMatrixTSym (Int_t row_lwb, Int_t row_upb)
 
 TMatrixTSym (Int_t nrows, const Element *data, Option_t *option="")
 option= More...
 
 TMatrixTSym (Int_t row_lwb, Int_t row_upb, const Element *data, Option_t *option="")
 array elements are copied More...
 
 TMatrixTSym (const TMatrixTSym< Element > &another)
 
template<class Element2 >
 TMatrixTSym (const TMatrixTSym< Element2 > &another)
 
 TMatrixTSym (EMatrixCreatorsOp1 op, const TMatrixTSym< Element > &prototype)
 Create a matrix applying a specific operation to the prototype. More...
 
 TMatrixTSym (EMatrixCreatorsOp1 op, const TMatrixT< Element > &prototype)
 
 TMatrixTSym (const TMatrixTSym< Element > &a, EMatrixCreatorsOp2 op, const TMatrixTSym< Element > &b)
 
 TMatrixTSym (const TMatrixTSymLazy< Element > &lazy_constructor)
 
virtual ~TMatrixTSym ()
 
TMatrixTBase< Element > & Apply (const TElementActionT< Element > &action)
 Apply action to each matrix element. More...
 
TMatrixTBase< Element > & Apply (const TElementPosActionT< Element > &action)
 Apply action to each element of the matrix. More...
 
virtual void Clear (Option_t *="")
 
virtual Double_t Determinant () const
 
virtual void Determinant (Double_t &d1, Double_t &d2) const
 
const TMatrixT< Element > EigenVectors (TVectorT< Element > &eigenValues) const
 Return a matrix containing the eigen-vectors ordered by descending eigen-values. More...
 
virtual const Int_t * GetColIndexArray () const
 
virtual Int_t * GetColIndexArray ()
 
virtual const Element * GetMatrixArray () const
 
virtual Element * GetMatrixArray ()
 
virtual const Int_t * GetRowIndexArray () const
 
virtual Int_t * GetRowIndexArray ()
 
TMatrixTSym< Element > & GetSub (Int_t row_lwb, Int_t row_upb, TMatrixTSym< Element > &target, Option_t *option="S") const
 Get submatrix [row_lwb..row_upb][row_lwb..row_upb]; The indexing range of the returned matrix depends on the argument option: More...
 
virtual TMatrixTBase< Element > & GetSub (Int_t row_lwb, Int_t row_upb, Int_t col_lwb, Int_t col_upb, TMatrixTBase< Element > &target, Option_t *option="S") const
 Get submatrix [row_lwb..row_upb][col_lwb..col_upb]; The indexing range of the returned matrix depends on the argument option: More...
 
TMatrixTSym< Element > GetSub (Int_t row_lwb, Int_t row_upb, Int_t col_lwb, Int_t col_upb, Option_t *option="S") const
 
TMatrixTSym< Element > & Invert (Double_t *det=0)
 Invert the matrix and calculate its determinant Notice that the LU decomposition is used instead of Bunch-Kaufman Bunch-Kaufman guarantees a symmetric inverted matrix but is slower than LU . More...
 
TMatrixTSym< Element > & InvertFast (Double_t *det=0)
 Invert the matrix and calculate its determinant. More...
 
virtual Bool_t IsSymmetric () const
 Check whether matrix is symmetric. More...
 
void Minus (const TMatrixTSym< Element > &a, const TMatrixTSym< Element > &b)
 Symmetric matrix summation. Create a matrix C such that C = A + B. More...
 
void Mult (const TMatrixTSym< Element > &a)
 
Element operator() (Int_t rown, Int_t coln) const
 
Element & operator() (Int_t rown, Int_t coln)
 
TMatrixTSym< Element > & operator*= (Element val)
 Multiply every element of the matrix with val. More...
 
TMatrixTSym< Element > & operator+= (Element val)
 Add val to every element of the matrix. More...
 
TMatrixTSymoperator+= (const TMatrixTSym &source)
 Add the source matrix. More...
 
TMatrixTSym< Element > & operator-= (Element val)
 Subtract val from every element of the matrix. More...
 
TMatrixTSymoperator-= (const TMatrixTSym &source)
 Subtract the source matrix. More...
 
TMatrixTSym< Element > & operator= (const TMatrixTSym< Element > &source)
 
TMatrixTSym< Element > & operator= (const TMatrixTSymLazy< Element > &source)
 
template<class Element2 >
TMatrixTSym< Element > & operator= (const TMatrixTSym< Element2 > &source)
 
TMatrixTSym< Element > & operator= (Element val)
 Assign val to every element of the matrix. More...
 
const TMatrixTRow_const< Element > operator[] (Int_t rown) const
 
TMatrixTRow< Element > operator[] (Int_t rown)
 
void Plus (const TMatrixTSym< Element > &a, const TMatrixTSym< Element > &b)
 Symmetric matrix summation. Create a matrix C such that C = A + B. More...
 
virtual TMatrixTBase< Element > & Randomize (Element alpha, Element beta, Double_t &seed)
 randomize matrix element values but keep matrix symmetric More...
 
virtual TMatrixTSym< Element > & RandomizePD (Element alpha, Element beta, Double_t &seed)
 randomize matrix element values but keep matrix symmetric positive definite More...
 
TMatrixTSym< Element > & Rank1Update (const TVectorT< Element > &v, Element alpha=1.0)
 Perform a rank 1 operation on the matrix: A += alpha * v * v^T. More...
 
virtual TMatrixTBase< Element > & ResizeTo (Int_t nrows, Int_t ncols, Int_t=-1)
 Set size of the matrix to nrows x ncols New dynamic elements are created, the overlapping part of the old ones are copied to the new structures, then the old elements are deleted. More...
 
virtual TMatrixTBase< Element > & ResizeTo (Int_t row_lwb, Int_t row_upb, Int_t col_lwb, Int_t col_upb, Int_t=-1)
 Set size of the matrix to [row_lwb:row_upb] x [col_lwb:col_upb] New dynamic elements are created, the overlapping part of the old ones are copied to the new structures, then the old elements are deleted. More...
 
TMatrixTBase< Element > & ResizeTo (const TMatrixTSym< Element > &m)
 
virtual TMatrixTBase< Element > & SetColIndexArray (Int_t *)
 
virtual TMatrixTBase< Element > & SetMatrixArray (const Element *data, Option_t *option="")
 Copy array data to matrix . More...
 
virtual TMatrixTBase< Element > & SetRowIndexArray (Int_t *)
 
TMatrixTSym< Element > & SetSub (Int_t row_lwb, const TMatrixTBase< Element > &source)
 Insert matrix source starting at [row_lwb][row_lwb], thereby overwriting the part [row_lwb..row_lwb+nrows_source][row_lwb..row_lwb+nrows_source];. More...
 
virtual TMatrixTBase< Element > & SetSub (Int_t row_lwb, Int_t col_lwb, const TMatrixTBase< Element > &source)
 Insert matrix source starting at [row_lwb][col_lwb] in a symmetric fashion, thereby overwriting the part [row_lwb..row_lwb+nrows_source][row_lwb..row_lwb+nrows_source];. More...
 
virtual TMatrixTBase< Element > & Shift (Int_t row_shift, Int_t col_shift)
 Shift the row index by adding row_shift and the column index by adding col_shift, respectively. More...
 
TMatrixTSym< Element > & Similarity (const TMatrixT< Element > &n)
 Calculate B * (*this) * B^T , final matrix will be (nrowsb x nrowsb) This is a similarity transform when B is orthogonal . More...
 
TMatrixTSym< Element > & Similarity (const TMatrixTSym< Element > &n)
 Calculate B * (*this) * B^T , final matrix will be (nrowsb x nrowsb) This is a similarity transform when B is orthogonal . More...
 
Element Similarity (const TVectorT< Element > &v) const
 Calculate scalar v * (*this) * v^T. More...
 
TMatrixTSym< Element > & SimilarityT (const TMatrixT< Element > &n)
 Calculate B^T * (*this) * B , final matrix will be (ncolsb x ncolsb) It is more efficient than applying the actual multiplication because this routine realizes that the final matrix is symmetric . More...
 
TMatrixTSym< Element > & T ()
 
void TMult (const TMatrixT< Element > &a)
 Create a matrix C such that C = A' * A. More...
 
void TMult (const TMatrixTSym< Element > &a)
 Matrix multiplication, with A symmetric Create a matrix C such that C = A' * A = A * A = A * A'. More...
 
TMatrixTSym< Element > & Transpose (const TMatrixTSym< Element > &source)
 Transpose a matrix. More...
 
TMatrixTSym< Element > & Use (Int_t row_lwb, Int_t row_upb, Element *data)
 
const TMatrixTSym< Element > & Use (Int_t row_lwb, Int_t row_upb, const Element *data) const
 
TMatrixTSym< Element > & Use (Int_t nrows, Element *data)
 
const TMatrixTSym< Element > & Use (Int_t nrows, const Element *data) const
 
TMatrixTSym< Element > & Use (TMatrixTSym< Element > &a)
 
const TMatrixTSym< Element > & Use (const TMatrixTSym< Element > &a) const
 
- Public Member Functions inherited from TMatrixTBase< Element >
 TMatrixTBase ()
 
virtual ~TMatrixTBase ()
 
virtual TMatrixTBase< Element > & Abs ()
 Take an absolute value of a matrix, i.e. apply Abs() to each element. More...
 
virtual Element ColNorm () const
 Column matrix norm, MAX{ SUM{ |M(i,j)|, over i}, over j}. More...
 
void Draw (Option_t *option="")
 Draw this matrix The histogram is named "TMatrixT" by default and no title. More...
 
virtual Element E2Norm () const
 Square of the Euclidian norm, SUM{ m(i,j)^2 }. More...
 
virtual void ExtractRow (Int_t row, Int_t col, Element *v, Int_t n=-1) const
 Store in array v, n matrix elements of row rown starting at column coln. More...
 
Int_t GetColLwb () const
 
Int_t GetColUpb () const
 
virtual void GetMatrix2Array (Element *data, Option_t *option="") const
 Copy matrix data to array . More...
 
Int_t GetNcols () const
 
Int_t GetNoElements () const
 
Int_t GetNrows () const
 
Int_t GetRowLwb () const
 
Int_t GetRowUpb () const
 
Element GetTol () const
 
virtual TMatrixTBase< Element > & InsertRow (Int_t row, Int_t col, const Element *v, Int_t n=-1)
 Copy n elements from array v to row rown starting at column coln. More...
 
void Invalidate ()
 
Bool_t IsOwner () const
 
Bool_t IsValid () const
 
void MakeValid ()
 
virtual Element Max () const
 return maximum vector element value More...
 
virtual Element Min () const
 return minimum matrix element value More...
 
virtual Int_t NonZeros () const
 Compute the number of elements != 0.0. More...
 
Element Norm1 () const
 
virtual TMatrixTBase< Element > & NormByDiag (const TVectorT< Element > &v, Option_t *option="D")
 option: More...
 
Element NormInf () const
 
Bool_t operator!= (Element val) const
 Are all matrix elements not equal to val? More...
 
Bool_t operator< (Element val) const
 Are all matrix elements < val? More...
 
Bool_t operator<= (Element val) const
 Are all matrix elements <= val? More...
 
Bool_t operator== (Element val) const
 Are all matrix elements equal to val? More...
 
Bool_t operator> (Element val) const
 Are all matrix elements > val? More...
 
Bool_t operator>= (Element val) const
 Are all matrix elements >= val? More...
 
void Print (Option_t *name="") const
 Print the matrix as a table of elements. More...
 
virtual Element RowNorm () const
 Row matrix norm, MAX{ SUM{ |M(i,j)|, over j}, over i}. More...
 
Element SetTol (Element tol)
 
virtual TMatrixTBase< Element > & Sqr ()
 Square each element of the matrix. More...
 
virtual TMatrixTBase< Element > & Sqrt ()
 Take square root of all elements. More...
 
virtual Element Sum () const
 Compute sum of elements. More...
 
virtual TMatrixTBase< Element > & UnitMatrix ()
 Make a unit matrix (matrix need not be a square one). More...
 
virtual TMatrixTBase< Element > & Zero ()
 Set matrix elements to zero. More...
 

Protected Member Functions

void Allocate (Int_t nrows, Int_t ncols, Int_t row_lwb=0, Int_t col_lwb=0, Int_t init=0, Int_t=-1)
 Allocate new matrix. More...
 
void Delete_m (Int_t size, Element *&)
 delete data pointer m, if it was assigned on the heap More...
 
Int_t Memcpy_m (Element *newp, const Element *oldp, Int_t copySize, Int_t newSize, Int_t oldSize)
 copy copySize doubles from *oldp to *newp . More...
 
Element * New_m (Int_t size)
 return data pointer . More...
 

Protected Attributes

Element fDataStack [TMatrixTBase< Element >::kSizeMax]
 
Element * fElements
 data container More...
 
- Protected Attributes inherited from TMatrixTBase< Element >
Int_t fColLwb
 
Bool_t fIsOwner
 
Int_t fNcols
 
Int_t fNelems
 
Int_t fNrowIndex
 
Int_t fNrows
 
Int_t fRowLwb
 
Element fTol
 

Additional Inherited Members

- Static Public Member Functions inherited from TMatrixTBase< Element >
static Element & NaNValue ()
 
- Protected Types inherited from TMatrixTBase< Element >
enum  { kSizeMax = 25 }
 
enum  { kWorkMax = 100 }
 
enum  EMatrixStatusBits { kStatus = BIT(14) }
 
- Static Protected Member Functions inherited from TMatrixTBase< Element >
static void DoubleLexSort (Int_t n, Int_t *first, Int_t *second, Element *data)
 default kTRUE, when Use array kFALSE More...
 
static void IndexedLexSort (Int_t n, Int_t *first, Int_t swapFirst, Int_t *second, Int_t swapSecond, Int_t *index)
 Lexical sort on array data using indices first and second. More...
 

#include <TMatrixDSymfwd.h>

Inheritance diagram for TMatrixTSym< Element >:
[legend]

Member Enumeration Documentation

◆ anonymous enum

template<class Element>
anonymous enum
Enumerator
kWorkMax 

Definition at line 50 of file TMatrixTSym.h.

◆ EMatrixCreatorsOp1

template<class Element>
enum TMatrixTSym::EMatrixCreatorsOp1
Enumerator
kZero 
kUnit 
kTransposed 
kInverted 
kAtA 

Definition at line 51 of file TMatrixTSym.h.

◆ EMatrixCreatorsOp2

template<class Element>
enum TMatrixTSym::EMatrixCreatorsOp2
Enumerator
kPlus 
kMinus 

Definition at line 52 of file TMatrixTSym.h.

Constructor & Destructor Documentation

◆ TMatrixTSym() [1/11]

template<class Element>
TMatrixTSym< Element >::TMatrixTSym ( )
inline

Definition at line 54 of file TMatrixTSym.h.

◆ TMatrixTSym() [2/11]

template<class Element >
TMatrixTSym< Element >::TMatrixTSym ( Int_t  nrows)
explicit

Definition at line 40 of file TMatrixTSym.cxx.

◆ TMatrixTSym() [3/11]

template<class Element >
TMatrixTSym< Element >::TMatrixTSym ( Int_t  row_lwb,
Int_t  row_upb 
)

Definition at line 48 of file TMatrixTSym.cxx.

◆ TMatrixTSym() [4/11]

template<class Element>
TMatrixTSym< Element >::TMatrixTSym ( Int_t  no_rows,
const Element *  elements,
Option_t *  option = "" 
)

option=

  • "F": array elements contains the matrix stored column-wise like in Fortran, so a[i,j] = elements[i+no_rows*j],
  • else it is supposed that array elements are stored row-wise a[i,j] = elements[i*no_cols+j]

array elements are copied

Definition at line 64 of file TMatrixTSym.cxx.

◆ TMatrixTSym() [5/11]

template<class Element>
TMatrixTSym< Element >::TMatrixTSym ( Int_t  row_lwb,
Int_t  row_upb,
const Element *  data,
Option_t *  option = "" 
)

array elements are copied

Definition at line 77 of file TMatrixTSym.cxx.

◆ TMatrixTSym() [6/11]

template<class Element>
TMatrixTSym< Element >::TMatrixTSym ( const TMatrixTSym< Element > &  another)

Definition at line 90 of file TMatrixTSym.cxx.

◆ TMatrixTSym() [7/11]

template<class Element>
template<class Element2 >
TMatrixTSym< Element >::TMatrixTSym ( const TMatrixTSym< Element2 > &  another)
inline

Definition at line 60 of file TMatrixTSym.h.

◆ TMatrixTSym() [8/11]

template<class Element>
TMatrixTSym< Element >::TMatrixTSym ( EMatrixCreatorsOp1  op,
const TMatrixTSym< Element > &  prototype 
)

Create a matrix applying a specific operation to the prototype.

Example: TMatrixTSym<Element> a(10,12); ...; TMatrixTSym<Element> b(TMatrixT::kTransposed, a); Supported operations are: kZero, kUnit, kTransposed, kInverted and kAtA.

Definition at line 103 of file TMatrixTSym.cxx.

◆ TMatrixTSym() [9/11]

template<class Element>
TMatrixTSym< Element >::TMatrixTSym ( EMatrixCreatorsOp1  op,
const TMatrixT< Element > &  prototype 
)

Definition at line 152 of file TMatrixTSym.cxx.

◆ TMatrixTSym() [10/11]

template<class Element>
TMatrixTSym< Element >::TMatrixTSym ( const TMatrixTSym< Element > &  a,
EMatrixCreatorsOp2  op,
const TMatrixTSym< Element > &  b 
)

Definition at line 171 of file TMatrixTSym.cxx.

◆ TMatrixTSym() [11/11]

template<class Element>
TMatrixTSym< Element >::TMatrixTSym ( const TMatrixTSymLazy< Element > &  lazy_constructor)

Definition at line 199 of file TMatrixTSym.cxx.

◆ ~TMatrixTSym()

template<class Element>
virtual TMatrixTSym< Element >::~TMatrixTSym ( )
inlinevirtual

Definition at line 72 of file TMatrixTSym.h.

Member Function Documentation

◆ Allocate()

template<class Element >
void TMatrixTSym< Element >::Allocate ( Int_t  no_rows,
Int_t  no_cols,
Int_t  row_lwb = 0,
Int_t  col_lwb = 0,
Int_t  init = 0,
Int_t  = -1 
)
protected

Allocate new matrix.

Arguments are number of rows, columns, row lowerbound (0 default) and column lowerbound (0 default).

Definition at line 273 of file TMatrixTSym.cxx.

◆ Apply() [1/2]

template<class Element>
TMatrixTBase< Element > & TMatrixTSym< Element >::Apply ( const TElementActionT< Element > &  action)
virtual

Apply action to each matrix element.

Reimplemented from TMatrixTBase< Element >.

Definition at line 1552 of file TMatrixTSym.cxx.

◆ Apply() [2/2]

template<class Element>
TMatrixTBase< Element > & TMatrixTSym< Element >::Apply ( const TElementPosActionT< Element > &  action)
virtual

Apply action to each element of the matrix.

To action the location of the current element is passed.

Reimplemented from TMatrixTBase< Element >.

Definition at line 1579 of file TMatrixTSym.cxx.

◆ Clear()

template<class Element>
virtual void TMatrixTSym< Element >::Clear ( Option_t *  = "")
inlinevirtual

Implements TMatrixTBase< Element >.

Definition at line 92 of file TMatrixTSym.h.

◆ Delete_m()

template<class Element>
void TMatrixTSym< Element >::Delete_m ( Int_t  size,
Element *&  m 
)
protected

delete data pointer m, if it was assigned on the heap

Definition at line 214 of file TMatrixTSym.cxx.

◆ Determinant() [1/2]

template<class Element >
Double_t TMatrixTSym< Element >::Determinant ( ) const
virtual

Reimplemented from TMatrixTBase< Element >.

Definition at line 934 of file TMatrixTSym.cxx.

◆ Determinant() [2/2]

template<class Element >
void TMatrixTSym< Element >::Determinant ( Double_t &  d1,
Double_t &  d2 
) const
virtual

Reimplemented from TMatrixTBase< Element >.

Definition at line 946 of file TMatrixTSym.cxx.

◆ EigenVectors()

template<class Element>
const TMatrixT< Element > TMatrixTSym< Element >::EigenVectors ( TVectorT< Element > &  eigenValues) const

Return a matrix containing the eigen-vectors ordered by descending eigen-values.

For full functionality use TMatrixDSymEigen .

Definition at line 1680 of file TMatrixTSym.cxx.

◆ GetColIndexArray() [1/2]

template<class Element>
virtual const Int_t* TMatrixTSym< Element >::GetColIndexArray ( ) const
inlinevirtual

Implements TMatrixTBase< Element >.

Definition at line 86 of file TMatrixTSym.h.

◆ GetColIndexArray() [2/2]

template<class Element>
virtual Int_t* TMatrixTSym< Element >::GetColIndexArray ( )
inlinevirtual

Implements TMatrixTBase< Element >.

Definition at line 87 of file TMatrixTSym.h.

◆ GetMatrixArray() [1/2]

template<class Element >
const Element * TMatrixTSym< Element >::GetMatrixArray ( ) const
inlinevirtual

Implements TMatrixTBase< Element >.

Definition at line 189 of file TMatrixTSym.h.

◆ GetMatrixArray() [2/2]

template<class Element >
Element * TMatrixTSym< Element >::GetMatrixArray ( )
inlinevirtual

Implements TMatrixTBase< Element >.

Definition at line 190 of file TMatrixTSym.h.

◆ GetRowIndexArray() [1/2]

template<class Element>
virtual const Int_t* TMatrixTSym< Element >::GetRowIndexArray ( ) const
inlinevirtual

Implements TMatrixTBase< Element >.

Definition at line 84 of file TMatrixTSym.h.

◆ GetRowIndexArray() [2/2]

template<class Element>
virtual Int_t* TMatrixTSym< Element >::GetRowIndexArray ( )
inlinevirtual

Implements TMatrixTBase< Element >.

Definition at line 85 of file TMatrixTSym.h.

◆ GetSub() [1/3]

template<class Element>
TMatrixTSym< Element > & TMatrixTSym< Element >::GetSub ( Int_t  row_lwb,
Int_t  row_upb,
TMatrixTSym< Element > &  target,
Option_t *  option = "S" 
) const

Get submatrix [row_lwb..row_upb][row_lwb..row_upb]; The indexing range of the returned matrix depends on the argument option:

option == "S" : return [0..row_upb-row_lwb+1][0..row_upb-row_lwb+1] (default) else : return [row_lwb..row_upb][row_lwb..row_upb]

Definition at line 502 of file TMatrixTSym.cxx.

◆ GetSub() [2/3]

template<class Element>
TMatrixTBase< Element > & TMatrixTSym< Element >::GetSub ( Int_t  row_lwb,
Int_t  row_upb,
Int_t  col_lwb,
Int_t  col_upb,
TMatrixTBase< Element > &  target,
Option_t *  option = "S" 
) const
virtual

Get submatrix [row_lwb..row_upb][col_lwb..col_upb]; The indexing range of the returned matrix depends on the argument option:

option == "S" : return [0..row_upb-row_lwb+1][0..col_upb-col_lwb+1] (default) else : return [row_lwb..row_upb][col_lwb..col_upb]

Implements TMatrixTBase< Element >.

Definition at line 568 of file TMatrixTSym.cxx.

◆ GetSub() [3/3]

template<class Element>
TMatrixTSym< Element > TMatrixTSym< Element >::GetSub ( Int_t  row_lwb,
Int_t  row_upb,
Int_t  col_lwb,
Int_t  col_upb,
Option_t *  option = "S" 
) const
inline

Definition at line 200 of file TMatrixTSym.h.

◆ Invert()

template<class Element >
TMatrixTSym< Element > & TMatrixTSym< Element >::Invert ( Double_t *  det = 0)

Invert the matrix and calculate its determinant Notice that the LU decomposition is used instead of Bunch-Kaufman Bunch-Kaufman guarantees a symmetric inverted matrix but is slower than LU .

The user can access Bunch-Kaufman through the TDecompBK class .

Definition at line 960 of file TMatrixTSym.cxx.

◆ InvertFast()

template<class Element >
TMatrixTSym< Element > & TMatrixTSym< Element >::InvertFast ( Double_t *  det = 0)

Invert the matrix and calculate its determinant.

Definition at line 978 of file TMatrixTSym.cxx.

◆ IsSymmetric()

template<class Element>
virtual Bool_t TMatrixTSym< Element >::IsSymmetric ( ) const
inlinevirtual

Check whether matrix is symmetric.

Reimplemented from TMatrixTBase< Element >.

Definition at line 95 of file TMatrixTSym.h.

◆ Memcpy_m()

template<class Element>
Int_t TMatrixTSym< Element >::Memcpy_m ( Element *  newp,
const Element *  oldp,
Int_t  copySize,
Int_t  newSize,
Int_t  oldSize 
)
protected

copy copySize doubles from *oldp to *newp .

However take care of the situation where both pointers are assigned to the same stack space

Definition at line 246 of file TMatrixTSym.cxx.

◆ Minus()

template<class Element>
void TMatrixTSym< Element >::Minus ( const TMatrixTSym< Element > &  a,
const TMatrixTSym< Element > &  b 
)

Symmetric matrix summation. Create a matrix C such that C = A + B.

Definition at line 345 of file TMatrixTSym.cxx.

◆ Mult()

template<class Element>
void TMatrixTSym< Element >::Mult ( const TMatrixTSym< Element > &  a)
inline

Definition at line 77 of file TMatrixTSym.h.

◆ New_m()

template<class Element >
Element * TMatrixTSym< Element >::New_m ( Int_t  size)
protected

return data pointer .

if requested size <= kSizeMax, assign pointer to the stack space

Definition at line 228 of file TMatrixTSym.cxx.

◆ operator()() [1/2]

template<class Element >
Element TMatrixTSym< Element >::operator() ( Int_t  rown,
Int_t  coln 
) const
inlinevirtual

Implements TMatrixTBase< Element >.

Definition at line 208 of file TMatrixTSym.h.

◆ operator()() [2/2]

template<class Element >
Element & TMatrixTSym< Element >::operator() ( Int_t  rown,
Int_t  coln 
)
inlinevirtual

Implements TMatrixTBase< Element >.

Definition at line 224 of file TMatrixTSym.h.

◆ operator*=()

template<class Element>
TMatrixTSym< Element > & TMatrixTSym< Element >::operator*= ( Element  val)

Multiply every element of the matrix with val.

Definition at line 1497 of file TMatrixTSym.cxx.

◆ operator+=() [1/2]

template<class Element>
TMatrixTSym< Element > & TMatrixTSym< Element >::operator+= ( Element  val)

Add val to every element of the matrix.

Definition at line 1465 of file TMatrixTSym.cxx.

◆ operator+=() [2/2]

template<class Element>
TMatrixTSym< Element > & TMatrixTSym< Element >::operator+= ( const TMatrixTSym< Element > &  source)

Add the source matrix.

Definition at line 1513 of file TMatrixTSym.cxx.

◆ operator-=() [1/2]

template<class Element>
TMatrixTSym< Element > & TMatrixTSym< Element >::operator-= ( Element  val)

Subtract val from every element of the matrix.

Definition at line 1481 of file TMatrixTSym.cxx.

◆ operator-=() [2/2]

template<class Element>
TMatrixTSym< Element > & TMatrixTSym< Element >::operator-= ( const TMatrixTSym< Element > &  source)

Subtract the source matrix.

Definition at line 1533 of file TMatrixTSym.cxx.

◆ operator=() [1/4]

template<class Element>
TMatrixTSym< Element > & TMatrixTSym< Element >::operator= ( const TMatrixTSym< Element > &  source)

Definition at line 1413 of file TMatrixTSym.cxx.

◆ operator=() [2/4]

template<class Element>
TMatrixTSym< Element > & TMatrixTSym< Element >::operator= ( const TMatrixTSymLazy< Element > &  source)

Definition at line 1430 of file TMatrixTSym.cxx.

◆ operator=() [3/4]

template<class Element>
template<class Element2 >
TMatrixTSym<Element>& TMatrixTSym< Element >::operator= ( const TMatrixTSym< Element2 > &  source)
inline

Definition at line 144 of file TMatrixTSym.h.

◆ operator=() [4/4]

template<class Element>
TMatrixTSym< Element > & TMatrixTSym< Element >::operator= ( Element  val)

Assign val to every element of the matrix.

Definition at line 1449 of file TMatrixTSym.cxx.

◆ operator[]() [1/2]

template<class Element>
const TMatrixTRow_const<Element> TMatrixTSym< Element >::operator[] ( Int_t  rown) const
inline

Definition at line 139 of file TMatrixTSym.h.

◆ operator[]() [2/2]

template<class Element>
TMatrixTRow<Element> TMatrixTSym< Element >::operator[] ( Int_t  rown)
inline

Definition at line 140 of file TMatrixTSym.h.

◆ Plus()

template<class Element>
void TMatrixTSym< Element >::Plus ( const TMatrixTSym< Element > &  a,
const TMatrixTSym< Element > &  b 
)

Symmetric matrix summation. Create a matrix C such that C = A + B.

Definition at line 311 of file TMatrixTSym.cxx.

◆ Randomize()

template<class Element>
TMatrixTBase< Element > & TMatrixTSym< Element >::Randomize ( Element  alpha,
Element  beta,
Double_t &  seed 
)
virtual

randomize matrix element values but keep matrix symmetric

Reimplemented from TMatrixTBase< Element >.

Definition at line 1607 of file TMatrixTSym.cxx.

◆ RandomizePD()

template<class Element>
TMatrixTSym< Element > & TMatrixTSym< Element >::RandomizePD ( Element  alpha,
Element  beta,
Double_t &  seed 
)
virtual

randomize matrix element values but keep matrix symmetric positive definite

Definition at line 1638 of file TMatrixTSym.cxx.

◆ Rank1Update()

template<class Element>
TMatrixTSym< Element > & TMatrixTSym< Element >::Rank1Update ( const TVectorT< Element > &  v,
Element  alpha = 1.0 
)

Perform a rank 1 operation on the matrix: A += alpha * v * v^T.

Definition at line 1062 of file TMatrixTSym.cxx.

◆ ResizeTo() [1/3]

template<class Element >
TMatrixTBase< Element > & TMatrixTSym< Element >::ResizeTo ( Int_t  nrows,
Int_t  ncols,
Int_t  = -1 
)
virtual

Set size of the matrix to nrows x ncols New dynamic elements are created, the overlapping part of the old ones are copied to the new structures, then the old elements are deleted.

Implements TMatrixTBase< Element >.

Definition at line 770 of file TMatrixTSym.cxx.

◆ ResizeTo() [2/3]

template<class Element >
TMatrixTBase< Element > & TMatrixTSym< Element >::ResizeTo ( Int_t  row_lwb,
Int_t  row_upb,
Int_t  col_lwb,
Int_t  col_upb,
Int_t  = -1 
)
virtual

Set size of the matrix to [row_lwb:row_upb] x [col_lwb:col_upb] New dynamic elements are created, the overlapping part of the old ones are copied to the new structures, then the old elements are deleted.

Implements TMatrixTBase< Element >.

Definition at line 840 of file TMatrixTSym.cxx.

◆ ResizeTo() [3/3]

template<class Element>
TMatrixTBase<Element>& TMatrixTSym< Element >::ResizeTo ( const TMatrixTSym< Element > &  m)
inline

Definition at line 118 of file TMatrixTSym.h.

◆ SetColIndexArray()

template<class Element>
virtual TMatrixTBase<Element>& TMatrixTSym< Element >::SetColIndexArray ( Int_t *  )
inlinevirtual

Implements TMatrixTBase< Element >.

Definition at line 90 of file TMatrixTSym.h.

◆ SetMatrixArray()

template<class Element>
TMatrixTBase< Element > & TMatrixTSym< Element >::SetMatrixArray ( const Element *  data,
Option_t *  option = "" 
)
virtual

Copy array data to matrix .

It is assumed that array is of size >= fNelems (=)))) fNrows*fNcols option indicates how the data is stored in the array: option =

  • 'F' : column major (Fortran) m[i][j] = array[i+j*fNrows]
  • else : row major (C) m[i][j] = array[i*fNcols+j] (default)

Reimplemented from TMatrixTBase< Element >.

Definition at line 742 of file TMatrixTSym.cxx.

◆ SetRowIndexArray()

template<class Element>
virtual TMatrixTBase<Element>& TMatrixTSym< Element >::SetRowIndexArray ( Int_t *  )
inlinevirtual

Implements TMatrixTBase< Element >.

Definition at line 89 of file TMatrixTSym.h.

◆ SetSub() [1/2]

template<class Element>
TMatrixTSym< Element > & TMatrixTSym< Element >::SetSub ( Int_t  row_lwb,
const TMatrixTBase< Element > &  source 
)

Insert matrix source starting at [row_lwb][row_lwb], thereby overwriting the part [row_lwb..row_lwb+nrows_source][row_lwb..row_lwb+nrows_source];.

Definition at line 635 of file TMatrixTSym.cxx.

◆ SetSub() [2/2]

template<class Element>
TMatrixTBase< Element > & TMatrixTSym< Element >::SetSub ( Int_t  row_lwb,
Int_t  col_lwb,
const TMatrixTBase< Element > &  source 
)
virtual

Insert matrix source starting at [row_lwb][col_lwb] in a symmetric fashion, thereby overwriting the part [row_lwb..row_lwb+nrows_source][row_lwb..row_lwb+nrows_source];.

Implements TMatrixTBase< Element >.

Definition at line 685 of file TMatrixTSym.cxx.

◆ Shift()

template<class Element >
TMatrixTBase< Element > & TMatrixTSym< Element >::Shift ( Int_t  row_shift,
Int_t  col_shift 
)
virtual

Shift the row index by adding row_shift and the column index by adding col_shift, respectively.

So [rowLwb..rowUpb][colLwb..colUpb] becomes [rowLwb+row_shift..rowUpb+row_shift][colLwb+col_shift..colUpb+col_shift]

Reimplemented from TMatrixTBase< Element >.

Definition at line 755 of file TMatrixTSym.cxx.

◆ Similarity() [1/3]

template<class Element>
TMatrixTSym< Element > & TMatrixTSym< Element >::Similarity ( const TMatrixT< Element > &  b)

Calculate B * (*this) * B^T , final matrix will be (nrowsb x nrowsb) This is a similarity transform when B is orthogonal .

It is more efficient than applying the actual multiplication because this routine realizes that the final matrix is symmetric .

Definition at line 1098 of file TMatrixTSym.cxx.

◆ Similarity() [2/3]

template<class Element>
TMatrixTSym< Element > & TMatrixTSym< Element >::Similarity ( const TMatrixTSym< Element > &  b)

Calculate B * (*this) * B^T , final matrix will be (nrowsb x nrowsb) This is a similarity transform when B is orthogonal .

It is more efficient than applying the actual multiplication because this routine realizes that the final matrix is symmetric .

Definition at line 1189 of file TMatrixTSym.cxx.

◆ Similarity() [3/3]

template<class Element>
Element TMatrixTSym< Element >::Similarity ( const TVectorT< Element > &  v) const

Calculate scalar v * (*this) * v^T.

Definition at line 1291 of file TMatrixTSym.cxx.

◆ SimilarityT()

template<class Element>
TMatrixTSym< Element > & TMatrixTSym< Element >::SimilarityT ( const TMatrixT< Element > &  b)

Calculate B^T * (*this) * B , final matrix will be (ncolsb x ncolsb) It is more efficient than applying the actual multiplication because this routine realizes that the final matrix is symmetric .

Definition at line 1326 of file TMatrixTSym.cxx.

◆ T()

template<class Element>
TMatrixTSym<Element>& TMatrixTSym< Element >::T ( )
inline

Definition at line 127 of file TMatrixTSym.h.

◆ TMult() [1/2]

template<class Element>
void TMatrixTSym< Element >::TMult ( const TMatrixT< Element > &  a)

Create a matrix C such that C = A' * A.

In other words, c[i,j] = SUM{ a[k,i] * a[k,j] }.

Definition at line 380 of file TMatrixTSym.cxx.

◆ TMult() [2/2]

template<class Element>
void TMatrixTSym< Element >::TMult ( const TMatrixTSym< Element > &  a)

Matrix multiplication, with A symmetric Create a matrix C such that C = A' * A = A * A = A * A'.

Definition at line 428 of file TMatrixTSym.cxx.

◆ Transpose()

template<class Element>
TMatrixTSym< Element > & TMatrixTSym< Element >::Transpose ( const TMatrixTSym< Element > &  source)

Transpose a matrix.

Definition at line 1040 of file TMatrixTSym.cxx.

◆ Use() [1/6]

template<class Element>
TMatrixTSym< Element > & TMatrixTSym< Element >::Use ( Int_t  row_lwb,
Int_t  row_upb,
Element *  data 
)

Definition at line 474 of file TMatrixTSym.cxx.

◆ Use() [2/6]

template<class Element>
const TMatrixTSym<Element>& TMatrixTSym< Element >::Use ( Int_t  row_lwb,
Int_t  row_upb,
const Element *  data 
) const
inline

Definition at line 98 of file TMatrixTSym.h.

◆ Use() [3/6]

template<class Element>
TMatrixTSym< Element > & TMatrixTSym< Element >::Use ( Int_t  nrows,
Element *  data 
)
inline

Definition at line 192 of file TMatrixTSym.h.

◆ Use() [4/6]

template<class Element>
const TMatrixTSym< Element > & TMatrixTSym< Element >::Use ( Int_t  nrows,
const Element *  data 
) const
inline

Definition at line 193 of file TMatrixTSym.h.

◆ Use() [5/6]

template<class Element>
TMatrixTSym< Element > & TMatrixTSym< Element >::Use ( TMatrixTSym< Element > &  a)
inline

Definition at line 195 of file TMatrixTSym.h.

◆ Use() [6/6]

template<class Element>
const TMatrixTSym< Element > & TMatrixTSym< Element >::Use ( const TMatrixTSym< Element > &  a) const
inline

Definition at line 197 of file TMatrixTSym.h.

Member Data Documentation

◆ fDataStack

template<class Element>
Element TMatrixTSym< Element >::fDataStack[TMatrixTBase< Element >::kSizeMax]
protected

Definition at line 38 of file TMatrixTSym.h.

◆ fElements

template<class Element>
Element* TMatrixTSym< Element >::fElements
protected

data container

Definition at line 39 of file TMatrixTSym.h.

Libraries for TMatrixTSym< Element >:
[legend]

The documentation for this class was generated from the following files: