Logo ROOT   6.13/01
Reference Guide
Class Hierarchy

Go to the graphical class hierarchy

This inheritance list is sorted roughly, but not completely, alphabetically:
[detail level 12345]
 CROOT::Math::CholeskyDecompHelpers::_decomposer< F, N, M >Struct to do a Cholesky decomposition
 CROOT::Math::CholeskyDecompHelpers::_decomposer< F, 0, M >Struct to do a Cholesky decomposition (specialized, N = 0)
 CROOT::Math::CholeskyDecompHelpers::_decomposer< F, 1, M >Struct to do a Cholesky decomposition (specialized, N = 1)
 CROOT::Math::CholeskyDecompHelpers::_decomposer< F, 2, M >Struct to do a Cholesky decomposition (specialized, N = 2)
 CROOT::Math::CholeskyDecompHelpers::_decomposer< F, 3, M >Struct to do a Cholesky decomposition (specialized, N = 3)
 CROOT::Math::CholeskyDecompHelpers::_decomposer< F, 4, M >Struct to do a Cholesky decomposition (specialized, N = 4)
 CROOT::Math::CholeskyDecompHelpers::_decomposer< F, 5, M >Struct to do a Cholesky decomposition (specialized, N = 5)
 CROOT::Math::CholeskyDecompHelpers::_decomposer< F, 6, M >Struct to do a Cholesky decomposition (specialized, N = 6)
 CROOT::Math::CholeskyDecompHelpers::_decomposerGenDim< F, M >Struct to do a Cholesky decomposition (general dimensionality)
 CROOT::Math::CholeskyDecompHelpers::_inverter< F, N, M >Struct to obtain the inverse from a Cholesky decomposition
 CROOT::Math::CholeskyDecompHelpers::_inverter< F, 0, M >Struct to obtain the inverse from a Cholesky decomposition (N = 0)
 CROOT::Math::CholeskyDecompHelpers::_inverter< F, 1, M >Struct to obtain the inverse from a Cholesky decomposition (N = 1)
 CROOT::Math::CholeskyDecompHelpers::_inverter< F, 2, M >Struct to obtain the inverse from a Cholesky decomposition (N = 2)
 CROOT::Math::CholeskyDecompHelpers::_inverter< F, 3, M >Struct to obtain the inverse from a Cholesky decomposition (N = 3)
 CROOT::Math::CholeskyDecompHelpers::_inverter< F, 4, M >Struct to obtain the inverse from a Cholesky decomposition (N = 4)
 CROOT::Math::CholeskyDecompHelpers::_inverter< F, 5, M >Struct to obtain the inverse from a Cholesky decomposition (N = 5)
 CROOT::Math::CholeskyDecompHelpers::_inverter< F, 6, M >Struct to obtain the inverse from a Cholesky decomposition (N = 6)
 CROOT::Math::CholeskyDecompHelpers::_inverterGenDim< F, M >Struct to obtain the inverse from a Cholesky decomposition (general dimensionality)
 CROOT::Math::CholeskyDecompHelpers::_solver< F, N, V >Struct to solve a linear system using its Cholesky decomposition
 CROOT::Math::CholeskyDecompHelpers::_solver< F, 0, V >Struct to solve a linear system using its Cholesky decomposition (N=0)
 CROOT::Math::CholeskyDecompHelpers::_solver< F, 1, V >Struct to solve a linear system using its Cholesky decomposition (N=1)
 CROOT::Math::CholeskyDecompHelpers::_solver< F, 2, V >Struct to solve a linear system using its Cholesky decomposition (N=2)
 CROOT::Math::CholeskyDecompHelpers::_solver< F, 3, V >Struct to solve a linear system using its Cholesky decomposition (N=3)
 CROOT::Math::CholeskyDecompHelpers::_solver< F, 4, V >Struct to solve a linear system using its Cholesky decomposition (N=4)
 CROOT::Math::CholeskyDecompHelpers::_solver< F, 5, V >Struct to solve a linear system using its Cholesky decomposition (N=5)
 CROOT::Math::CholeskyDecompHelpers::_solver< F, 6, V >Struct to solve a linear system using its Cholesky decomposition (N=6)
 CROOT::Math::CholeskyDecompHelpers::_solverGenDim< F, V >Struct to solve a linear system using its Cholesky decomposition (generalised dimensionality)
 CROOT::Minuit2::ABObj< mtype, M, T >
 CROOT::Minuit2::ABObj< sym, LASymMatrix, double >
 CROOT::Minuit2::ABObj< vec, LAVector, double >
 CROOT::Minuit2::ABProd< M1, M2 >
 CROOT::Minuit2::ABSum< M1, M2 >
 CROOT::Math::AddOp< T >Addition Operation Class
 CROOT::Math::AddPolicy< T, D1, D2, R1, R2 >Matrix addition policy
 CROOT::Math::AddPolicy< T, D1, D2, MatRepSym< T, D1 >, MatRepSym< T, D1 > >
 CROOT::Minuit2::AlgebraicProdType< A, B >
 CROOT::Minuit2::AlgebraicProdType< gen, gen >
 CROOT::Minuit2::AlgebraicProdType< gen, sym >
 CROOT::Minuit2::AlgebraicProdType< gen, vec >
 CROOT::Minuit2::AlgebraicProdType< sym, gen >
 CROOT::Minuit2::AlgebraicProdType< sym, sym >
 CROOT::Minuit2::AlgebraicProdType< sym, vec >
 CROOT::Minuit2::AlgebraicProdType< T, T >
 CROOT::Minuit2::AlgebraicProdType< vec, gen >
 CROOT::Minuit2::AlgebraicProdType< vec, sym >
 CROOT::Minuit2::AlgebraicSumType< A, B >
 CROOT::Minuit2::AlgebraicSumType< gen, vec >
 CROOT::Minuit2::AlgebraicSumType< sym, vec >
 CROOT::Minuit2::AlgebraicSumType< T, T >
 CROOT::Minuit2::AlgebraicSumType< vec, gen >
 CROOT::Minuit2::AlgebraicSumType< vec, sym >
 CROOT::Math::Assign< T, D1, D2, A, R1, R2 >Structure to assign from an expression based to general matrix to general matrix
 CROOT::Math::Assign< T, D1, D2, A, MatRepSym< T, D1 >, MatRepStd< T, D1, D2 > >Dummy Structure which flags an error to avoid assigment from expression based on a general matrix to a symmetric matrix
 CROOT::Math::Assign< T, D1, D2, A, MatRepSym< T, D1 >, MatRepSym< T, D1 > >Structure to assign from an expression based to symmetric matrix to symmetric matrix
 CROOT::Math::AssignItr< T, D1, D2, R >Structure for assignment to a general matrix from iterator
 CROOT::Math::AssignItr< T, D1, D2, MatRepSym< T, D1 > >Specialized structure for assignment to a symmetrix matrix from iterator
 CROOT::Math::AssignSymForce Expression evaluation from general to symmetric
 CROOT::Math::AxisAngleAxisAngle class describing rotation represented with direction axis (3D Vector) and an angle of rotation around that axis
 CROOT::Math::BaseIntegratorOptionsBase class for Numerical integration options common in 1D and multi-dimension This is an internal class and is not supposed to be instantiated by the user
 CROOT::Math::KDTree< _DataPoint >::BaseNode
 CROOT::Minuit2::BasicFunctionGradient
 CROOT::Minuit2::BasicFunctionMinimumResult of the minimization; both internal and external (MnUserParameterState) representation available For the parameters at the Minimum
 CROOT::Minuit2::BasicMinimumErrorInternal Class containing the error information on the estimated minimum : Error matrix + dcovar + additional flags for quality and validity checks
 CROOT::Minuit2::BasicMinimumParameters
 CROOT::Minuit2::BasicMinimumSeed
 CROOT::Minuit2::BasicMinimumState
 CROOT::Math::BinaryOp< Operator, LHS, RHS, T >BinaryOperation class A class representing binary operators in the parse tree
 CROOT::Math::BinaryOpCopyL< Operator, LHS, RHS, T >Binary Operation class with value storage for the left argument
 CROOT::Math::BinaryOpCopyR< Operator, LHS, RHS, T >Binary Operation class with value storage for the right argument
 CBinaryOpPolicy
 CROOT::Math::GenVector_detail::BitReproducible
 CROOT::Math::BoostLorentz boost class with the (4D) transformation represented internally by a 4x4 orthosymplectic matrix
 CROOT::Math::BoostXClass representing a Lorentz Boost along the X axis, by beta
 CROOT::Math::BoostYClass representing a Lorentz Boost along the Y axis, by beta
 CROOT::Math::BoostZClass representing a Lorentz Boost along the Z axis, by beta
 CROOT::Math::Cartesian2D< T >Class describing a 2D cartesian coordinate system (x, y coordinates)
 CROOT::Math::Cartesian3D< T >Class describing a 3D cartesian coordinate system (x, y, z coordinates)
 CROOT::Math::Cartesian3D< Scalar >
 CROOT::Math::ChebyshevApproxClass describing a Chebyshev series which can be used to approximate a function in a defined range [a,b] using Chebyshev polynomials
 CROOT::Math::ChebyshevPol
 CROOT::Math::CholeskyDecomp< F, N >Class to compute the Cholesky decomposition of a matrix
 CROOT::Math::CholeskyDecompGenDim< F >Class to compute the Cholesky decomposition of a matrix
 CROOT::Math::CholInverter< idim >
 CCompareAsc< T >
 CCompareDesc< T >
 CROOT::Math::KDTree< _DataPoint >::ComparePoints
 CROOT::Math::CompileTimeChecker< bool >
 CROOT::Math::CompileTimeChecker< false >
 CROOT::Math::Constant< T >Constant expression class A class representing constant expressions (literals) in the parse tree
 CContDistFree functions adapter needed by UNURAN for onedimensional continuous distributions
 CROOT::Minuit2::ContoursError
 CROOT::Minuit2::MnCross::CrossFcnLimit
 CROOT::Minuit2::MnCross::CrossNewMin
 CROOT::Minuit2::MnCross::CrossParLimit
 CROOT::Math::KDTree< _DataPoint >::Cut
 CROOT::Math::Cylindrical3D< T >Class describing a cylindrical coordinate system based on rho, z and phi
 CROOT::Math::CylindricalEta3D< T >Class describing a cylindrical coordinate system based on eta (pseudorapidity) instead of z
 CROOT::Fit::DataOptionsDataOptions : simple structure holding the options on how the data are filled
 CROOT::Fit::DataRangeClass describing the range in the coordinates it supports multiple range in a coordinate
 CROOT::Math::GenVector_detail::BitReproducible::DB8
 CROOT::Math::DefaultCoordinateSystemTagDefaultCoordinateSystemTag Default tag for identifying any coordinate system
 CROOT::Math::Delaunay2DClass to generate a Delaunay triangulation of a 2D set of points
 CROOT::Math::DerivatorClass for computing numerical derivative of a function
 CDerivFunType
 CROOT::Math::Determinant< n, idim >Detrminant for a general squared matrix Function to compute the determinant from a square matrix ( \( \det(A)\)) of dimension idim and order n
 CDiscrDistFree functions adapter needed by UNURAN for one-dimensional discrete distribution
 CROOT::Math::DisplacementVector2D< CoordSystem, Tag >Class describing a generic displacement vector in 2 dimensions
 CROOT::Math::DisplacementVector3D< CoordSystem, Tag >Class describing a generic displacement vector in 3 dimensions
 CROOT::Math::DisplacementVector3D< Cartesian3D< Scalar > >
 CROOT::Math::DisplacementVector3D< Cartesian3D< T >, DefaultCoordinateSystemTag >
 CROOT::Math::DistSamplerInterface class for generic sampling of a distribution, i.e
 CROOT::Math::DistSamplerOptionsDistSampler options class
 CROOT::Math::DivOp< T >Division (element-wise) Operation Class
 CROOT::Fit::DummyDeleter< T >
 CROOT::Math::gv_detail::ERROR_This_Rotation_Conversion_is_NOT_Supported
 CROOT::Math::EulerAnglesEulerAngles class describing rotation as three angles (Euler Angles)
 CROOT::Fit::FitUtil::Evaluate< T >
 CROOT::Math::EvaluatorOneDim< MultiFuncType >
 CROOT::Math::EvaluatorOneDim< const ROOT::Math::IParamMultiFunction & >
 Cstd::exceptionSTL class
 CROOT::Math::Expr< ExprType, T, D, D2, R1 >
 CROOT::Math::Fabs< T >Unary abs Operation Class
 CROOT::Math::FactoryFactory class holding static functions to create the interfaces like ROOT::Math::Minimizer via the Plugin Manager
 CROOT::Math::FastInverter< idim, n >Fast Matrix Inverter class Class to specialize calls to Dinv
 CROOT::Math::FastInverter< 3 >3x3 direct matrix inversion using Cramer Rule use only for FastInverter
 CROOT::Math::FastInverter< 4 >4x4 matrix inversion using Cramers rule
 CROOT::Math::FastInverter< 5 >5x5 Matrix inversion using Cramers rule
 CROOT::Fit::FitConfigClass describing the configuration of the fit, options and parameter settings using the ROOT::Fit::ParameterSettings class
 CROOT::Fit::FitDataBase class for all the fit data types: Stores the coordinates and the DataOptions
 CROOT::Fit::FitResultClass containg the result of the fit and all the related information (fitted parameter values, error, covariance matrix and minimizer result information) Contains a pointer also to the fitted (model) function, modified with the fit parameter values
 CROOT::Fit::FitterFitter class, entry point for performing all type of fits
 CROOT::Math::ParamFunctorHandler< ParentFunctor, Func >::FuncEvaluator< F, T >
 CROOT::Math::ParamFunctorHandler< ParentFunctor, Func >::FuncEvaluator< F *, T >
 CROOT::Math::ParamFunctorHandler< ParentFunctor, Func >::FuncEvaluator< F *const, T >
 CROOT::Minuit2::FunctionGradient
 CROOT::Minuit2::FunctionMinimizerBase class for function minimizers; user may give FCN or FCN with Gradient, Parameter starting values and initial Error guess (sigma) (or "step size"), or Parameter starting values and initial covariance matrix; covariance matrix is stored in Upper triangular packed storage format, e.g
 CROOT::Minuit2::FunctionMinimumClass holding the full result of the minimization; both internal and external (MnUserParameterState) representation available for the parameters at the Minimum
 CROOT::Minuit2::gen
 CROOT::Minuit2::GenericFunctionClass from which all the other classes, representing functions, inherit
 CROOT::Math::GeneticMinimizerParameters
 CROOT::Math::GlobalCoordinateSystemTagTag for identifying vectors based on a global coordinate system
 CROOT::Math::GoFTest
 CROOT::Minuit2::GradientCalculatorInterface class for gradient calculators
 CROOT::Math::GSL1DMinimizerWrapperWrapper class for gsl_min_fminimizer structure
 CROOT::Math::GSLChebSeriesWrapper class for C struct gsl_cheb_series
 CROOT::Math::GSLDerivatorClass for computing numerical derivative of a function based on the GSL numerical algorithm This class is implemented using the numerical derivatives algorithms provided by GSL (see GSL Online Manual )
 CROOT::Math::GSLFunctionAdapter< UserFunc >Class for adapting any C++ functor class to C function pointers used by GSL
 CROOT::Math::GSLFunctionDerivWrapperClass to wrap a gsl_function_fdf (with derivatives)
 CROOT::Math::GSLFunctionWrapperWrapper class to the gsl_function C structure
 CROOT::Math::GSLIntegrationWorkspace
 CROOT::Math::GSLInterpolatorInterpolation class based on GSL interpolation functions
 CROOT::Math::GSLMCIntegrationWorkspace
 CROOT::Math::GSLMonteFunctionAdapter< UserFunc >
 CROOT::Math::GSLMonteFunctionWrapperWrapper to a multi-dim function withtout derivatives for Monte Carlo multi-dimensional integration algorithm
 CROOT::Math::GSLMultiFitGSLMultiFit, internal class for implementing GSL non linear least square GSL fitting
 CROOT::Math::GSLMultiFitFunctionAdapter< FuncVector >Class for adapting a C++ functor class to C function pointers used by GSL MultiFit Algorithm The templated C++ function class must implement:
 CROOT::Math::GSLMultiFitFunctionWrapperWrapper to a multi-dim function withtout derivatives for multi-dimensional minimization algorithm
 CROOT::Math::GSLMultiMinDerivFunctionWrapperWrapper for a multi-dimensional function with derivatives used in GSL multidim minimization algorithm
 CROOT::Math::GSLMultiMinFunctionAdapter< UserFunc >Class for adapting any multi-dimension C++ functor class to C function pointers used by GSL MultiMin algorithms
 CROOT::Math::GSLMultiMinFunctionWrapperWrapper to a multi-dim function withtout derivatives for multi-dimensional minimization algorithm
 CROOT::Math::GSLMultiMinimizerGSLMultiMinimizer class , for minimizing multi-dimensional function using derivatives
 CROOT::Math::GSLMultiRootBaseSolverGSLMultiRootBaseSolver, internal class for implementing GSL multi-root finders This is the base class for GSLMultiRootSolver (solver not using derivatives) and GSLMUltiRootDerivSolver (solver using derivatives)
 CROOT::Math::GSLMultiRootDerivFunctionWrapperWrapper to a multi-dim function with derivatives for multi roots algorithm
 CROOT::Math::GSLMultiRootFinderClass for Multidimensional root finding algorithms bassed on GSL
 CROOT::Math::GSLMultiRootFunctionAdapter< FuncVector >Class for adapting a C++ functor class to C function pointers used by GSL MultiRoot Algorithm The templated C++ function class must implement:
 CROOT::Math::GSLMultiRootFunctionWrapperWrapper to a multi-dim function without derivatives for multi roots algorithm
 CROOT::Math::GSLQRngWrapperGSLQRngWrapper class to wrap gsl_qrng structure
 CROOT::Math::GSLQuasiRandomEngineGSLQuasiRandomEngine Base class for all GSL quasi random engines, normally user instantiate the derived classes which creates internally the generator and uses the class ROOT::Math::QuasiRandom
 CROOT::Math::GSLRandomEngineGSLRandomEngine Base class for all GSL random engines, normally user instantiate the derived classes which creates internally the generator
 CROOT::Math::GSLRngROOTWrapper< Engine >
 CROOT::Math::GSLRngWrapperGSLRngWrapper class to wrap gsl_rng structure
 CROOT::Math::GSLRootFdFSolverRoot-Finder with derivatives implementation class using GSL
 CROOT::Math::GSLRootFSolverRoot-Finder implementation class using GSL
 CROOT::Math::GSLSimAnFuncGSLSimAnFunc class description
 CROOT::Math::GSLSimAnnealingGSLSimAnnealing class for performing a simulated annealing search of a multidimensional function
 CROOT::Math::GSLSimAnParamsStructure holding the simulated annealing parameters
 CHelperOps
 CIBaseFunc
 CROOT::Math::IBaseFunctionMultiDimTempl< T >Documentation for the abstract class IBaseFunctionMultiDim
 CROOT::Math::IBaseFunctionOneDimInterface (abstract class) for generic functions objects of one-dimension Provides a method to evaluate the function given a value (simple double) by implementing operator() (const double )
 CROOT::Math::IBaseParamDocumentation for the abstract class IBaseParam
 CROOT::Math::IGradientMultiDimTempl< T >Gradient interface (abstract class) defining the signature for calculating the gradient of a multi-dimensional function
 CROOT::Math::IGradientOneDimSpecialized Gradient interface(abstract class) for one dimensional functions It provides a method to evaluate the derivative of the function, Derivative and a method to evaluate at the same time the function and the derivative FdF
 CROOT::Math::IMinimizer1DInterface class for numerical methods for one-dimensional minimization
 CImpl
 CROOT::Math::rowOffsetsUtils::indices<... >
 CROOT::Fit::FitUtil::IntegralEvaluator< ParamFunc >
 CROOT::Math::IntegratorMultiDimUser class for performing multidimensional integration
 CROOT::Math::IntegratorOneDimUser Class for performing numerical integration of a function in one dimension
 CROOT::Math::InterpolatorClass for performing function interpolation of points
 CROOT::Math::Inverter< idim, n >Matrix Inverter class Class to specialize calls to Dinv
 CROOT::Math::Inverter< 0 >Inverter<0>
 CROOT::Math::Inverter< 1 >1x1 matrix inversion \(a_{11} \to 1/a_{11}\)
 CROOT::Math::Inverter< 2 >2x2 matrix inversion using Cramers rule
 CROOT::Math::IOptionsGeneric interface for defining configuration options of a numerical algorithm
 CROOT::Math::IRootFinderMethodInterface for finding function roots of one-dimensional functions
 CROOT::Math::KDTree< _DataPoint >::iterator
 CROOT::Math::KahanSum< T >The Kahan compensate summation algorithm significantly reduces the numerical error in the total obtained by adding a sequence of finite precision floating point numbers
 CROOT::Math::KDTree< _DataPoint >
 CROOT::Math::KelvinFunctionsThis class calculates the Kelvin functions Ber(x), Bei(x), Ker(x), Kei(x), and their first derivatives
 CROOT::Minuit2::LASymMatrixClass describing a symmetric matrix of size n
 CROOT::Minuit2::LAVector
 CROOT::Fit::FitUtil::LikelihoodAux< T >
 CROOT::Fit::FitUtil::LikelihoodAux< double >
 CTMath::Limits< T >
 CROOT::Math::LocalCoordinateSystemTagTag for identifying vectors based on a local coordinate system
 CROOT::Math::LorentzRotationLorentz transformation class with the (4D) transformation represented by a 4x4 orthosymplectic matrix
 CROOT::Math::LorentzVector< CoordSystem >Class describing a generic LorentzVector in the 4D space-time, using the specified coordinate system for the spatial vector part
 CROOT::Math::rowOffsetsUtils::make_indices_impl< I, IndexTuple, N >
 CROOT::Math::rowOffsetsUtils::make_indices_impl< 0, indices<>, N >
 CROOT::Math::rowOffsetsUtils::make_indices_impl< I, indices< Indices... >, N >
 CROOT::Math::rowOffsetsUtils::make_indices_impl< N, indices< Indices... >, N >
 CROOT::Math::detail::manipulator< char_t >
 CROOT::Math::MathMoreLib
 CROOT::Math::MatRepStd< T, D1, D2 >Expression wrapper class for Matrix objects
 CROOT::Math::MatRepSym< T, D >MatRepSym Matrix storage representation for a symmetric matrix of dimension NxN This class is a template on the contained type and on the symmetric matrix size, N
 CROOT::Minuit2::MatrixInverse< mtype, M, T >
 CROOT::Minuit2::MatrixInverse< vec, M, T >
 CROOT::Math::MatrixMulOp< MatrixA, MatrixB, T, D >Class for Matrix-Matrix multiplication
 CROOT::Math::ParamMemFunHandler< ParentFunctor, PointerToObj, PointerToMemFn >::MemFuncEvaluator< PObj, F, T >
 CROOT::Math::meta_col_dot< I >
 CROOT::Math::meta_col_dot< 0 >
 CROOT::Math::meta_dot< I >
 CROOT::Math::meta_dot< 0 >
 CROOT::Math::meta_mag< I >
 CROOT::Math::meta_mag< 0 >
 CROOT::Math::meta_matrix_dot< I >
 CROOT::Math::meta_matrix_dot< 0 >
 CROOT::Math::meta_row_dot< I >
 CROOT::Math::meta_row_dot< 0 >
 CROOT::Math::MinimizerAbstract Minimizer class, defining the interface for the various minimizer (like Minuit2, Minuit, GSL, etc..) Plug-in's exist in ROOT to be able to instantiate the derived classes like ROOT::Math::GSLMinimizer or ROOT::Math::Minuit2Minimizer via the plug-in manager
 CROOT::Math::MinimizerOptionsMinimizer options
 CROOT::Math::MinimizerVariableTransformationBase class for MinimizerVariable transformations defining the functions to deal with bounded parameters
 CROOT::Math::MinimTransformVariableMinimTransformVariable class Contains meta information of the variables such as bounds, fix flags and deals with transformation of the variable The class does not contain the values and the step size (error) of the variable This is an internal class used by the MinimTransformFunction class
 CROOT::Minuit2::MinimumBuilder
 CROOT::Minuit2::MinimumErrorMinimumError keeps the inv
 CROOT::Minuit2::MinimumErrorUpdator
 CROOT::Minuit2::MinimumParameters
 CROOT::Minuit2::MinimumSeedMinimumSeed contains the starting values for the minimization produced by the SeedGenerator
 CROOT::Minuit2::MinimumSeedGeneratorBase class for seed generators (starting values); the seed generator prepares initial starting values from the input (MnUserParameterState) for the minimization;
 CROOT::Minuit2::MinimumStateMinimumState keeps the information (position, Gradient, 2nd deriv, etc) after one minimization step (usually in MinimumBuilder)
 CROOT::Math::MinOp< T >Subtraction Operation Class
 CROOT::Minuit2::MinosErrorClass holding the result of Minos (lower and upper values) for a specific parameter
 CROOT::Minuit2::MinuitParameterClass for the individual Minuit Parameter with Name and number; contains the input numbers for the minimization or the output result from minimization; possible interactions: Fix/release, set/remove limits, set Value/error;
 CROOT::Math::Minus< T >Unary Minus Operation Class
 CROOT::Math::MinusEquals< T, D1, D2, A, R1, R2 >Evaluate the expression performing a -= operation Need to check whether creating a temporary object with the expression result (like in op: A -= A * B )
 CROOT::Math::MinusEquals< T, D1, D2, A, MatRepSym< T, D1 >, MatRepStd< T, D1, D2 > >Specialization for symmetrix -= general : NOT Allowed operation
 CROOT::Math::MinusEquals< T, D1, D2, A, MatRepSym< T, D1 >, MatRepSym< T, D1 > >Specialization for symmetric matrices
 CROOT::Math::MiserParametersStructures collecting parameters for MISER multidimensional integration
 CROOT::Math::MixMaxEngineImpl< N >
 CROOT::Math::MixMaxEngineImpl< ROOT_MM_N >
 CROOT::Minuit2::BasicFunctionMinimum::MnAboveMaxEdm
 CROOT::Minuit2::FunctionMinimum::MnAboveMaxEdm
 CROOT::Minuit2::MnApplicationApplication interface class for minimizers (migrad, simplex, Minimize, Scan) User normally instantiates the derived class like ROOT::Minuit2::MnMigrad for using Migrad for minimization
 CROOT::Minuit2::MnContoursAPI class for Contours Error analysis (2-dim errors); minimization has to be done before and Minimum must be valid; possibility to ask only for the points or the points and associated Minos errors;
 CROOT::Minuit2::MnCovarianceSqueezeClass to reduce the covariance matrix when a parameter is fixed by removing the corresponding row and index
 CROOT::Minuit2::MnCross
 CROOT::Minuit2::MnEigenAPI class for calculating the eigenvalues of symmetric matrix
 CROOT::Minuit2::MnFcnWrapper class to FCNBase interface used internally by Minuit
 CROOT::Minuit2::MnFunctionCrossMnFunctionCross
 CROOT::Minuit2::MnGlobalCorrelationCoeffClass for global correlation coefficient
 CROOT::Minuit2::MnHesseAPI class for calculating the numerical covariance matrix (== 2x Inverse Hessian == 2x Inverse 2nd derivative); can be used by the user or Minuit itself
 CROOT::Minuit2::BasicMinimumError::MnHesseFailed
 CROOT::Minuit2::MinimumError::MnHesseFailed
 CROOT::Minuit2::BasicMinimumError::MnInvertFailed
 CROOT::Minuit2::MinimumError::MnInvertFailed
 CROOT::Minuit2::MnLineSearchImplements a 1-dimensional minimization along a given direction (i.e
 CROOT::Minuit2::MnMachinePrecisionDetermines the relative floating point arithmetic precision
 CROOT::Minuit2::BasicMinimumError::MnMadePosDef
 CROOT::Minuit2::MinimumError::MnMadePosDef
 CROOT::Minuit2::MnMinosAPI class for Minos Error analysis (asymmetric errors); minimization has to be done before and Minimum must be valid; possibility to ask only for one side of the Minos Error;
 CROOT::Minuit2::BasicMinimumError::MnNotPosDef
 CROOT::Minuit2::MinimumError::MnNotPosDef
 CROOT::Minuit2::MnParabolaThis class defines a parabola of the form a*x*x + b*x + c
 CROOT::Minuit2::MnParabolaFactory
 CROOT::Minuit2::MnParabolaPointA point of a parabola
 CROOT::Minuit2::MnParameterScanScans the values of FCN as a function of one Parameter and retains the best function and Parameter values found
 CROOT::Minuit2::MnPlotMnPlot produces a text-screen graphical output of (x,y) points, e.g
 CROOT::Minuit2::MnPosDefForce the covariance matrix to be positive defined by adding extra terms in the diagonal
 CROOT::Minuit2::MnPrint
 CROOT::Minuit2::BasicFunctionMinimum::MnReachedCallLimit
 CROOT::Minuit2::FunctionMinimum::MnReachedCallLimit
 CROOT::Minuit2::MnRefCountedPointer< T >
 CROOT::Minuit2::MnRefCountedPointer< ROOT::Minuit2::BasicFunctionGradient >
 CROOT::Minuit2::MnRefCountedPointer< ROOT::Minuit2::BasicFunctionMinimum >
 CROOT::Minuit2::MnRefCountedPointer< ROOT::Minuit2::BasicMinimumError >
 CROOT::Minuit2::MnRefCountedPointer< ROOT::Minuit2::BasicMinimumParameters >
 CROOT::Minuit2::MnRefCountedPointer< ROOT::Minuit2::BasicMinimumSeed >
 CROOT::Minuit2::MnRefCountedPointer< ROOT::Minuit2::BasicMinimumState >
 CROOT::Minuit2::MnReferenceCounter
 CROOT::Minuit2::MnStrategyAPI class for defining three levels of strategies: low (0), medium (1), high (>=2); acts on: Migrad (behavioural), Minos (lowers strategy by 1 for Minos-own minimization), Hesse (iterations), Numerical2PDerivative (iterations)
 CROOT::Minuit2::MnTiny
 CROOT::Minuit2::MnTraceObject
 CROOT::Minuit2::MnUserCovarianceClass containing the covariance matrix data represented as a vector of size n*(n+1)/2 Used to hide internal matrix representation to user
 CROOT::Minuit2::MnUserParametersAPI class for the user interaction with the parameters; serves as input to the minimizer as well as output from it; users can interact: Fix/release parameters, set values and errors, etc
 CROOT::Minuit2::MnUserParameterStateClass which holds the external user and/or internal Minuit representation of the parameters and errors; transformation internal <-> external on demand;
 CROOT::Minuit2::MnUserTransformationClass dealing with the transformation between user specified parameters (external) and internal parameters used for minimization
 CROOT::Minuit2::MnVectorTransform
 CROOT::Minuit2::MPIProcess
 CROOT::Minuit2::MPITerminate
 CROOT::Math::MulOp< T >Multiplication (element-wise) Operation Class
 CMultiDistFree functions adapter needed by UNURAN for multidimensional cont distribution
 CROOT::Math::MultPolicy< T, R1, R2 >Matrix-matrix multiplication policy
 CROOT::Minuit2::NegativeG2LineSearchIn case that one of the components of the second derivative g2 calculated by the numerical Gradient calculator is negative, a 1dim line search in the direction of that component is done in order to find a better position where g2 is again positive
 CROOT::Math::NullTypeFunc1D
 CROOT::Math::CholeskyDecompHelpers::PackedArrayAdapter< G >Adapter for packed arrays (to SMatrix indexing conventions)
 CROOT::Fit::ParameterSettingsClass, describing value, limits and step size of the parameters Provides functionality also to set/retrieve values, step sizes, limits and fix the parameters
 CROOT::Math::ParamFunctionBase< T >Class defining the signature for multi-dim parametric functions
 CROOT::Math::ParamFunctorTempl< T >Param Functor class for Multidimensional functions
 CROOT::Math::PlaceExpr< T, D1, D2, D3, D4, A, R1, R2 >
 CROOT::Math::PlaceExpr< T, D1, D2, D3, D4, A, MatRepSym< T, D1 >, MatRepStd< T, D3, D4 > >
 CROOT::Math::PlaceExpr< T, D1, D2, D3, D4, A, MatRepSym< T, D1 >, MatRepSym< T, D3 > >
 CROOT::Math::PlaceMatrix< T, D1, D2, D3, D4, R1, R2 >Structure to deal when a submatrix is placed in a matrix
 CROOT::Math::PlaceMatrix< T, D1, D2, D3, D4, MatRepSym< T, D1 >, MatRepStd< T, D3, D4 > >
 CROOT::Math::PlaceMatrix< T, D1, D2, D3, D4, MatRepSym< T, D1 >, MatRepSym< T, D3 > >
 CROOT::Math::PlainParameters
 CROOT::Math::Impl::Plane3D< T >Class describing a geometrical plane in 3 dimensions
 CROOT::Math::PlusEquals< T, D1, D2, A, R1, R2 >Evaluate the expression performing a += operation Need to check whether creating a temporary object with the expression result (like in op: A += A * B )
 CROOT::Math::PlusEquals< T, D1, D2, A, MatRepSym< T, D1 >, MatRepStd< T, D1, D2 > >Specialization for symmetrix += general : NOT Allowed operation
 CROOT::Math::PlusEquals< T, D1, D2, A, MatRepSym< T, D1 >, MatRepSym< T, D1 > >Specialization for symmetric matrices Evaluate the expression performing a += operation for symmetric matrices Need to have a separate functions to avoid to modify two times the off-diagonal elements (i.e applying two times the expression) Need to check whether creating a temporary object with the expression result (like in op: A += A * B )
 CROOT::Math::Polar2D< T >Class describing a polar 2D coordinate system based on r and phi Phi is restricted to be in the range [-PI,PI)
 CROOT::Math::Polar3D< T >Class describing a polar coordinate system based on r, theta and phi Phi is restricted to be in the range [-PI,PI)
 CROOT::Math::PositionVector2D< CoordSystem, Tag >Class describing a generic position vector (point) in 2 dimensions
 CROOT::Math::PositionVector3D< CoordSystem, Tag >Class describing a generic position vector (point) in 3 dimensions
 CROOT::Math::PtEtaPhiE4D< ScalarType >Class describing a 4D cylindrical coordinate system using Pt , Phi, Eta and E (or rho, phi, eta , T) The metric used is (-,-,-,+)
 CROOT::Math::PtEtaPhiM4D< ScalarType >Class describing a 4D cylindrical coordinate system using Pt , Phi, Eta and M (mass) The metric used is (-,-,-,+)
 CROOT::Math::PxPyPzE4D< ScalarType >Class describing a 4D cartesian coordinate system (x, y, z, t coordinates) or momentum-energy vectors stored as (Px, Py, Pz, E)
 CROOT::Math::PxPyPzM4D< ScalarType >Class describing a 4D coordinate system or momentum-energy vectors stored as (Px, Py, Pz, M)
 CROOT::Math::QuasiRandom< Engine >User class for MathMore random numbers template on the Engine type
 CROOT::Math::QuaternionRotation class with the (3D) rotation represented by a unit quaternion (u, i, j, k)
 CROOT::Math::Random< Engine >Documentation for the Random class
 CROOT::Math::RandomFunctions< Engine, EngineBaseType >
 CROOT::Math::RandomFunctions< EngineType, DefaultEngineType >
 CROOT::Math::RandomFunctionsImpl< EngineBaseType >Definition of the generic impelmentation class for the RandomFunctions
 CROOT::Math::RandomFunctionsImpl< DefaultEngineType >
 CROOT::Math::RandomFunctionsImpl< TRandomEngine >Implementation class for the RandomFunction for all the engined that derives from TRandomEngine class, which defines an interface which has TRandomEngine::Rndm() In this way we can have a common implementation for the RandomFunctions
 CROOT::Math::RetrieveMatrix< T, D1, D2, D3, D4, R1, R2 >Structure for getting sub matrices We have different cases according to the matrix representations
 CROOT::Math::RetrieveMatrix< T, D1, D2, D3, D4, MatRepSym< T, D1 >, MatRepStd< T, D3, D4 > >
 CROOT::Math::RetrieveMatrix< T, D1, D2, D3, D4, MatRepSym< T, D1 >, MatRepSym< T, D3 > >
 CROOT::Math::RichardsonDerivatorUser class for calculating the derivatives of a function
 Crng_state_st
 CROOT::Math::RootFinderUser Class to find the Root of one dimensional functions
 CROOT::Math::Rotation3DRotation class with the (3D) rotation represented by a 3x3 orthogonal matrix
 CROOT::Math::RotationXRotation class representing a 3D rotation about the X axis by the angle of rotation
 CROOT::Math::RotationYRotation class representing a 3D rotation about the Y axis by the angle of rotation
 CROOT::Math::RotationZRotation class representing a 3D rotation about the Z axis by the angle of rotation
 CROOT::Math::RotationZYXRotation class with the (3D) rotation represented by angles describing first a rotation of an angle phi (yaw) about the Z axis, followed by a rotation of an angle theta (pitch) about the Y axis, followed by a third rotation of an angle psi (roll) about the X axis
 CROOT::Math::RowOffsets< D >Static structure to keep the conversion from (i,j) to offsets in the storage data for a symmetric matrix
 CROOT::Math::SDeterminant< n, idim >Dsfact
 CROOT::Minuit2::SimplexParametersClass describing the simplex set of points (f(x), x ) which evolve during the minimization iteration process
 CROOT::Minuit2::SinParameterTransformationClass for the transformation for double-limited parameter Using a sin function one goes from a double-limited parameter range to an unlimited one
 CROOT::Math::SInverter< T, n, idim >Dsinv
 CROOT::Math::SkipFunction< SkipNumber >
 CROOT::Math::SkipFunction< 0 >
 CROOT::Math::SMatrix< T, D1, D2, R >SMatrix: a generic fixed size D1 x D2 Matrix class
 CROOT::Math::SMatrixIdentity
 CROOT::Math::SMatrixNoInit
 CROOT::Math::SMatrix< T, D1, D2, R >::SMatrixRow
 CROOT::Math::SMatrix< T, D1, D2, R >::SMatrixRow_const
 CROOT::Math::Sqr< T >Unary Square Operation Class
 CROOT::Math::Sqrt< T >Unary Square Root Operation Class
 CROOT::Minuit2::SqrtLowParameterTransformationTransformation from external to internal Parameter based on sqrt(1 + x**2)
 CROOT::Minuit2::SqrtUpParameterTransformationTransformation from external to internal Parameter based on sqrt(1 + x**2)
 CROOT::Minuit2::StackAllocatorStackAllocator controls the memory allocation/deallocation of Minuit
 CROOT::Minuit2::StackAllocatorHolder
 CROOT::Minuit2::StackError
 CROOT::Minuit2::StackOverflowDefine stack allocator symbol
 CROOT::Math::StdEngine< Generator >Class to wrap engines fron the C++ standard random library in the ROOT Random interface
 CROOT::Math::StdEngineType< Generator >
 CROOT::Math::StdEngineType< std::knuth_b >
 CROOT::Math::StdEngineType< std::minstd_rand >
 CROOT::Math::StdEngineType< std::mt19937 >
 CROOT::Math::StdEngineType< std::mt19937_64 >
 CROOT::Math::StdEngineType< std::random_device >
 CROOT::Math::StdEngineType< std::ranlux24 >
 CROOT::Math::StdEngineType< std::ranlux48 >
 CROOT::Math::StdRandomEngine
 CROOT::Math::SVector< T, D >SVector: a generic fixed size Vector class
 CROOT::Minuit2::sym
 CTComplex
 CROOT::Math::TDataPoint< K, _val_type >
 CROOT::Math::TDataPointN< _val_type >
 CTElementActionT< Element >
 CTElementPosActionT< Element >
 CROOT::Math::TensorMulOp< Vector1, Vector2 >Class for Tensor Multiplication (outer product) of two vectors giving a matrix
 CROOT::Experimental::TFitResult
 CROOT::Experimental::TFunction< DIMENSION >
 CTLorentzRotation::TLorentzRotationRow
 CTMatrixDEigenTMatrixDEigen
 CTMatrixDSymEigenTMatrixDSymEigen
 CTMatrixTColumn_const< Element >
 CTMatrixTDiag_const< Element >
 CTMatrixTFlat_const< Element >
 CTMatrixTRow_const< Element >
 CTMatrixTSparseDiag_const< Element >
 CTMatrixTSparseRow_const< Element >
 CTMatrixTSub_const< Element >
 CTNamed
 CTNLP
 CTObject
 CROOT::Math::TRandomEngine
 CTRandomEngine
 CROOT::Math::Impl::Transform3D< T >Basic 3D Transformation class describing a rotation and then a translation The internal data are a 3D rotation data (represented as a 3x3 matrix) and a 3D vector data
 CROOT::Math::Impl::Translation3D< T >Class describing a 3 dimensional translation
 CROOT::Math::TransposeOp< Matrix, T, D1, D2 >Class for Transpose Operations
 CROOT::Math::TranspPolicy< T, D1, D2, R >Matrix transpose policy
 CROOT::Math::TranspPolicy< T, D1, D2, MatRepSym< T, D1 > >
 CROOT::Math::Delaunay2D::Triangle
 Ctriangulateio
 CTRotation::TRotationRow
 CTUnuranTUnuran class
 CTUnuranBaseDistTUnuranBaseDist, base class for Unuran distribution classees such as TUnuranContDist (for one-dimension) or TUnuranMultiContDist (multi-dimension)
 CTVirtualFFT
 CTVirtualFitter
 CROOT::Math::UnaryOp< Operator, RHS, T >UnaryOperation class A class representing unary operators in the parse tree
 CUnuranDistr< Function >UnuranDistr Provides free function based on TF1 to be called by unuran
 CUnuranDistrMulti< Function >Free functions for multidimensional functions needed bby UNURAN
 CUnuranRng< Random >UnuranRng class for interface ROOT random generators to Unuran
 CROOT::Minuit2::VariableMetricEDMEstimator
 CROOT::Math::VavilovBase class describing a Vavilov distribution
 CROOT::Minuit2::vec
 CROOT::Math::VecExpr< ExprType, T, D >Expression wrapper class for Vector objects
 CROOT::Math::VectorMatrixColOp< Vector, Matrix, D1 >Class for Vector-Matrix multiplication
 CROOT::Math::VectorMatrixRowOp< Matrix, Vector, D2 >
 CROOT::Minuit2::VectorOuterProduct< M, T >
 CROOT::Math::VegasParametersStructures collecting parameters for VEGAS multidimensional integration FOr implementation of default parameters see file mathmore/src/GSLMCIntegrationWorkspace.h
 CROOT::Math::VirtualIntegratorAbstract class for all numerical integration methods (1D and multi-dim) Interface defining the common methods for the numerical integrator classes of one and multi dimensions The derived class VirtualIntegratorOneDim defines the methods for one-dimensional integration
 CFunctionType
 CIPFType